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Syllabus for MA!M.S;: Economics
Forth Semester :
Optional: (B)
Econometric Methods

Unit— 1: Generalised Least Squares _
Aitken’s Theorem of GLS — Feasible GLS and its Properties —
Heteroscedasticity: Test and Solutions —Autocorrelation: Test and Solutions.

Unit—2: Non-Linear Estimation
Non-Linear Least Squares and Iteration process —Models with Binary
Dependents Variables — Logit and Probit Models

Unit-3: Distributed Lag Models : i
Concept— Koyck Model — Partial Adjustment and Adaptive Expectation
Models — Estimation of Models with a Lagged Dependent Variable —Test
of Autocorrelation in Auto-Regressive Models '

Unit — 4; Analysis of Time Series
Components of Time Series—Fitting of Trend — Variate Difference Method
— The idea of a stochastic Time Series - Stationary and Non-stationary
Time Series — Autocorrelation Function and Correlelogram - the Problem
of Regression Analysis with Non-stationary Time Series.

Unit—5: Introduction to Simultaneous Equation Model

Structural and Reduced Forms — Simultaneity Bias— Informal Introduction
to Identification Problem, Indirect Least Squares and Two Stage least
Squares '




Paper Introduction:

This paper is designed to give a basic idea of the various
Econometric Methods, tools and techniques.

Unit 1 discusses the concept. of generalized Least Square, the
Aitken’s Theorem along with the problem of Heteroscedasticity
and Autocorrelation with their Test and solutions.

Unit 2 basically deals with Non-Linear Estimation giving emphasis
on L0g1t and Probit models.

Unit 3 gives an idea about the Distributed Lag Models along with
test of Autocorrelation in Auto-Regressive Models.

Unit 4 discusses about Time series Econometrics giving a basic
idea of both stationary and Non-Stationary Time Seties.

Unit 5 gives an introduction to simultaneous Equation Model where
concepts of structural and reduced from coefficients, simultaneity _
Bias, Identification problems, Indirect Least Square etc are
discussed. :

The paper has the following five (5) units:—

Unit 1 : Generalised Least Squares

Unit 2 : Non-Linear Estimation

Unit3 : Distributed Lag Models

- Unit 4 : Analysis of Time Series

Unit5 : Introduction to Simultaneous Equation Model
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GENERALISED LEAST SQUARES

Contents:
1.0 Introduction
1.1 Objectives
1.2 Meaning and structure of GLS
- 1.3 Aitken's Theormof GLS
1.4 Heteroscedasticity
_ 1.4.1 Nature of Heteroscedasticity
1.4.2 Detection of Heteroscedasticity
1.5 Autocorrelation
1.5.1 Nature of the problem
1.5.2 Causes : : :
1.5.3 OLS Estimators in Presence of Autocorrelation
1.6 SummingUp
1.7 Self Assessment Questions
- 1.8 References/Suggested Readings

1.0  Introduction

. Incase the assumptions of the classsical linear Regression model are fulfilled,
we canuse OLS method for estimation of the model co-efficients. But, ifit
doesnot, then we have to use various method for estimation and solving the
problem to find out the estimators (co-efficients) of the model.

1.1 Objectives

This unit aims to illustrate the concepts related to the various measures

when the CLRM assumptions are not fulfilled. -

e altemative method to OLS when the CLRM assumptions are not fulfiled
ie.GLS. : ; :

e finding the problem using OLS in presence of heteroscedasticity and
selecting method for solution. :

e finding the problem with regards to Autcorrelation and its various
solutions. s

1.2  GLS (Generalized least Squares)

1.1. One of the important assumptions of classical linear regression model
is that the variance of each disturbance term u, conditional on the chosen
values of the explanatory variables, is some constant number o & Y(sigma
square). Thisis the assumption of homoscedasticity, or equal (homo) spread
(scedasticity), that is equal variance., symbolically,

g




EW)=¢? i=12,..
Then we canuse, OLS (OTdmary least square) method to find out estimators

that are BLUE. But if the variance of each distrubance term, u, conditional
onthe chosen valum of explanatory variables, is not equal, i.c. symbolmally,

E (UZ) —
Notice the subscnpt of o2, which remmds usthat the eondmonal variance
ofu, (=Conditional variances of Y. . are no longer constant,

In such a situation if we use ordinary least square (OLS) as the mmamrs,
what we will find that are not BLUE (Best, Linear, Unbiased).

Here we use General Least square (GLS) method. In short, GLS isOLS
on the transformed variable' s that sansﬁw the stsmdard least squares

assmnpnons
For the GLS estimation, Let us consider two-variable model—

Y, =B +B, X+u sl

We can write it as for case of adgebric) mani pulation—

Y, =B, X, +B,X+u, SO ¥.

Where x =1 for each i. These two formulations are identical- |

Now assume that the heteroscedastic variances o? are known. Divide
(1.2) through by o, to obtain-

*oi u; ’
e

Where the transformed variables, are the original variables divided by (the
known) ..

ie. Y] =BX5 8K tul e 14
We use the notaion B and B , the parameter of transformed model, to
- distinguish them from the original usual parameters B, and B,
The purpose of the transformation of the original model is to obtain following
features of transformed error term u;

Var (u}) =E(u] ) =E{-§-J

1 5 ;
=-—E(u}) Since o7 is known
i .

1
T
G

1
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Whichisa conétart That is, variance of the transformed distrubance term
u; isnow homoscedastic. Since we are still retaining the other assumptions
of the CLRM, now we can apply OLS inthe transformed model which will

give usthe BLUE es_umators. In short, theestimated B ; ; and f, arenow
BLUE and not the OLS estimators f§, and §, .

The actual mechanism of estimating § ; and B, are as follows- First we
write down the sample regression function of 1.4 -

Y, =P, +BoX; + i

Now to obtain GLS estimation , we minimize -

Eﬂt 2( o ot sz)? .............. 13

i.e where f | and § ; arethe weighted least square estimators
and where the weights w; such that

w =L
o

thalis, the weight is inversely pﬁportionél to the variance of u, or
y, conditional upon the given X.. It is understood that ... (u/X)) =var
(Y,/X,)=oc? wecanrewrite 1.5 as Tw i =X w;(Y, -f-p:x)* .16

Differentiating (1.6) with respect to f; and 3

Tl =g B BXJD) 1T

aza%: 22 wilY, B -Bix Jex)

Sé'tﬁngthe preceding expressions equal to Zero, we obtain the following
- two normal equations-

Ew;Yi=B;2wi+B;2wiXi - .
ZwixiYi=ﬁIEWixi-+ﬁ;Ewixf 110
solving simulteneously, we obtain-

B =

-Bix PR E |

Y




dé* - (EwiXE“;lXiYi)"(EWin]:WiY}) RN I .
an 62 “’,szixf)__@wix”

its variance is given by -
Zw,

bl 2o o e 2

Where w, =

&,]

N. B. : 1. Weighted least square (WLS), is just a special case of more
general estimating technique, GLS. In the context of hetrocedasticity, one
can treat two terms WLS and GLS interchangeably.

2. T EWY & Fe= ZWX
Y* 2\?; X HML_EW-

13  Aitkens Theorem of GLS

The alternative procedure 1o estimate the parameters of K variable LRM
in presence of Heteroscedasticity and Auto correlation is known GLS. In
the Aitkens Theorem letus ... that Q is a panitive asymmetric definite matrix.
Hence itis possible to find cut another non-singular matrix (positive Definite)
matrix P such that PP'=£2 wee(1) _

Now multiplying equation (1) by p™ and post multiplying by p™' we obtain

~p ppP " =p Qp

sI= ?”'Qp"’l

Ap'Q=pt =] _ s
Again from PP =Q '

= (pp)"' =Q7 = p"'p” =Q = pp = Q" ..3)
Our regression model~ y =xB+u ... 4)
Premultiply both side by—p* | |

~pTly=p" XB+p u=>y =x"B+u” ' ceenr (5)

Then equanon (5) is the modified or transformed model of the origonal
model (4), Hence.

Aply=y . px=x"pu=u’




‘Now E(u") =E(p"w)=p E@=0 [~G(u) =.01
Agin E(u'u")=E[(p u}pu)] |
=E(p uup-1
=p™E(uu’)p”
=p 8;0p™ =8p Q"

= 811 USing ......... 2 |
Thus (6) is the var—cov matrix of random distrubance term in the modified
model. that is why we can use OLS method to the modified medel- -

* Here our B OLS =(x"x")'x"y ‘ '
| = o e ol e oy
=(xp"p ") xpP7Y)
_ = (x’Q“lp"'x)"_(x'Q”'y) using-3
Which the required GLS estimator of §

Now =

" var-cov (BGLS) = 82(x’x)”
=8 {(p™0)'p x}"
=8, (xp"p )"
=820 -« %))
ghich known as the 2itkens .......... of the OLS estimators :-
ere

BGLS=(x'Q'x)"'xQ7y
=x0x)' Q7 (xf+u)
T =@ QX)) IRQ B+ QX)) IXQ
| =B+ (x'Q'x)'xQu
Now EBGLS) =B+ (x'Q'x)"'x'Q")E(u)
=B [E)=0]
In the same way we can frof that the GLS estimators are efficient with the

use of var-cov matrix of f§ GLSi,e

-9




 var-cov(BGLS) = 8 (x'Q'x)

. | ]
1 -p 0 0.
-p {d+p) O -0..
0 -p d+p) O..
G| £
o o 0. 0.-pl

- -

L R -
oo

1.4 Heterosecdasticity : Test and Solutions _
1.4.1 ‘TheNature of Heteroscedasting :
Heteroscedasticity is opposite to Homosecdasticity. As one of the important
assumptions of classical Linear Regression model is that the variance of
eachdistrubance term u,, Conditional on the chosen values of the explanatory
variables, is some constant number equal to o° - This is the assumption of
homoncedasticity , or equal (homo) spread (Secdasticity), that is, equal
variance, Symbolically, ' :

- E@)=0> i=1,2,.4

Diagrammatically-

Density

Fig 1.1 The figure shows, the conditional variance of Y, (whichis equal to
that of u)), conditional upon the given X, remains the same regard less of
the values taken by the variable X, Again,

10




Densiy

Saving

B +BX,

X

Above Fig 1.2 which shows that the conditional variance of Y, increases
as X increases. Here, the variancess of Y, are not the sam. Hence is
heterosecdasticity. Symbolically, '
E(u})=¢’ ‘ .
Notice the subscripts of G 2, which remind us that the conditional variances
of u(=conditional variances of Y) are no longer constant. - '
Two make the difference between homoscedasticity and heterosecdasticity
clear, assume that in the two-variable model Y, =B, +B,x; +u;Y
represents. Savings and X represents income. Fig. 1.1 & 1.2 shows that as
income increases savings also increases (i,e, on the average of income).
But Fig 1.1 the variance of savings remains the same at all levels of income
whereas in Fig 1.2 it increases with income. It seems that the higher income
families on the average save more than the lower-income families, but there
is also more variability of savings. '
There are several reasons why the variances of u, may be variable, some
of which are as follows. : ; -

1. Following the error learning models, as people learn, their errors of
behavior become smaller over time. .

2. Asincome grow, people have more discretionary income, and hance
more scope for choice about the disposition of their income.

3.  Asdatacollecting techniques improve, o? is likely to decrease.

4. Heteroscedasticity can also arise as a result of the presence of
outliets. _ ' _

5. Another soutce of heterocedasticity arises from violating
Assumptions of CLRM, namely, that the regression model is correctly
specified. _

6. Another source of heterosecdasticity is skewness in the distribution

* ofone or more regresors included in the model.
7. Other sources of hetrosecdasticity : As David Headry notes, (1)
" Tncorrect data transformation (e.g. ratio or first difference

11




transformation} (2) Incorrect fiunctional form (e.g. linear versus log-
models)

14.2 Detection of HET Erosoedast:czty :
The important practical question is : How does one know that
hetrosecdasticity is present in a specific situation? There are no hard-and-
fast rules for detecting hetrosecdasticity, only a few rules of thumb. -

Informal methods : :
Nature of the problem : Very often the nature of the problem under
considezatims’uggwtswhcﬁmheterbsecdasﬁdtyis likely to be encountered.
- Foreg: following the pioneering work of Prais and Houthakker on family
~ budget studies, whmﬁwyfoundthatmdualvarmwemmm&wregiﬁswn
'of consumption on income increased with incoine, one now genérally
assumes that in similar surveys, one can expect unequal variance among
disturbances.

Graphical Method :

If there is no a priori or empirical information about the nature of

heteroscedasticity, in practice one can do the regression analysis on the
. assumption that there is no heteroscedasticity and then do a postmortem

examination of the residual squared (2 to seeif they exhibit any systematic
pattern. Although {i? are not the same thing as’ theycanbeusedas
proxies especially if’ the sample size is sufficiently large Anexamination of -
thed? ¢ may reveal patterns such as those shown in Fig.

32

Fig2.1 we see that these is no systematic pattern between the two variables,
suggesting that perhaps no hetrosecdasticity is present in data. But Fig, 2.2
t02.5 e:dnb:tdeﬁmtcmlanonshlp(mm)ﬁgz 3Isuggest a lincar relationship.

24&2. Smd:catequadrancmlancnslnpbetwm &Y.
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Instead of plotting @2, against ¥, , one may plot them against one of the

explonatory variables, especially if plotting 7 against ¥; resultin the pattem
shown 2.1, But the relationship become same as follows. '

Formal Test: _

Park Test : Park formalizes the graphical methods by suggesting that o7 is

<ome funiction of the explanatory variable X, The functional form suggested
o’ =o"Xfe"

Ino?=Ino* +BInX, +v, - (A)

Where v - storhastic distrubance term.

Since g? is generally not known, Park suggests using i? asaproxy
and running the following regression -

G’ =Inc® +pInX, +v;

=o+BInX, +v,

If Bturn out to be statistically significant, it would suggest that
heterosecdasticity is present in the data, Ifit tums out to be insignificant, we
‘may accept the assemption of homosecdasticity.
Two stage : . _ _
(i) We runOLS regression disregarding the heterosecdasticity question.
We obtain @, from this regression, and then in the second stage we run the
‘regression. i | : -
ii) We run the regression f§: - ;
Although empirically appealing, Park test has some problems. Goldfed and

quandt have argued that the error term V. entering into ([ ) may not satisfy
OLS asumptions and may itself be heteroscedastic.

13




2) Glesjer Test :
The Gles;ertest is mﬂarmspmtoﬂ]eParktestAﬁm'oblammg&wmxduais

4; from the OLS regression, Glesjer suggests regressing the absolute values
of d,, onthe X vartable that is thought to be closely associated with cr .In
his experiments, Glesjer used the following ﬂzmtonal forms

;| =B, +B,X, +v, :

|“ij 3 ﬁl""" J—i+vi

!ﬁi!=ﬁ1 +ﬁz_!‘+";

Iu' B1+Bzf
=B, +B,X, +v,
lﬁilz\\l‘ﬁi +B, X5 +v,

Where v, isthe error term.
Again as an empirical or practical matter, onemay use the Glesjar approach.
But Goldfed and Quandt point out that the error term v; has some
problems, in that its expected value is nonezero, it is serially correlated and

nmncailylim heteroscedastic. An additional dlﬁictﬁtymﬁztthJqsermeﬂmd ;
is that models such as -

o) BB+,
[6;] = /B, +B,X2 +v.

are nonlinear in the parameters and therefore cannot be estimated wﬂ;h the
usual OLS procedure.

1st four models (preceding) give generally satisfactory results in detecting
hetemsecdastlcﬂy

Spearman 's Rank Correlation Test :
Spcarman's rank correlation coefficient is-

rd!
L=1- ﬁ[n o _1_1)] where d=difference in ranks

 assigned to the different characteristics of the ith individual or
phenomenon and n=numbsers of individuals or phenomena ranked. The
preceding rank correlation coefficient can be used’ to detect
heterosecdasticity as follows. Assume-

) . ; = [30 +'31X1 + ui
‘Step 1. Fit the regression to the dataon Y and X and obtain the residuall {,
Setp 2. Ignoring the sign of 4, that is taking their absolute value |4/, rank

14




both 4] and X.(or [%) according to an ascending or descending order and
compute the Spearman's rank correlation coefficient given previously. -
Step 3. Assuming that the population rank correlation coefficient p, is Zero
and n>8, the significance of the sample r, can be tested by the t test as
follows- ' '

r,Wn-2 '
= o (A)
-J 1-1 : :
With df=n-2 .
Tf the computed 't value exceeds the critical 't' value, We may accept the

hypothesis of heteronscedasticity : Otherwise we may reject it. If the
regression model involves more than one X variable, r, can be computed

between [&] and each of the X variables separately and can be tested for
statistical significance by the 't' test by equation (A). '

t=

Goldfed-Quandt. Test :

This method is applicable if one assumnes that the heteroscedastic variance
o2, is positively related to one of the explanatory variables in the regression
model. For simplicity, consider the usual two variable model :

' Yi=ﬁl-‘.ﬁle +ul ssansmaannn (1)
Suppose o7 i is positively related to Xi as
o =o’X? R

Where 2 constant

Assumption (2) pastulates that 5?2 is poportional to the square of the X
variable. Such an assumption has been found quite useful by Prais and
Houthakker in their study of family budgets.

If (2) is appropriate, it would mean ¢? would be larger, the larger the value
of X,, if that turns out to be the case, heteroscedasticity is most likely to be
present in the model. To test the explicity, Goldfeld and Quandt. suggested
the following steps- '

Step 1 : Order or rank the observations according to the values of : %
. begining with the lowest X valve.

StepZ:Omitccenual observations where c is specified a priori and devide
the remaining (n-c) observations into two groups each of (n-c)/2
observations. ;

Step 3 : Fit separate OLS regression to the first (n-c)/2 observations and
the last (n-c)/2 observations, and obtain the respective residual sums of
squares RSS, and RSS,, RSS, representing the RSS from the regression
corresponding to the smaller X values (the small variance group) andRSS,
that from the larger X, values (the large variance group). These RSS each
havc . E

15




n—c n—-c~-2k
a5

Whaekisﬁmnumberofpmametﬁﬁtobewﬁm&tad,inchﬂingﬂminmmqat
(why?), For the two variable case k is of course 2.

Step 4
Compute the ratio
% RSS, /df B
KSS§/df SR O o0

If u, are assumed to be normally distributed (which we usually do), and if
the assumption of homoscedasticity is valid, then it can be shown that , of
(2) follows F distribution with numerator and denominator df each of (n-c-
2K)/2. ‘ | _
Ifinan application the computed }, (=F) s greater than the critical 'Fat the
chosen level of signifiance, we can reject the hypothesis of homoscedasticity,
that is, we can say that heteroscedasticity is very likely. Before illustrating
~ thetest, aword about omitting the c central observation is in order. For two
variable mode] the Monte carlo experiments done by Goldfeld and Quandt
suggest that ¢ is about 8 if the sample size is about 60 and it is about 16 if
the sample size is about 60. But Judge et. a note that c=4 if n=30 and c=10
ifn is about 60 have been found satisfactory in practice.

But when there more than one X variable in the model, the ranklng of
observations, the first step in the test can be done according to any one of

them. Thus in the model . Y; = B, +B,X,, +B,X, +B,X,, +u;, wecan
rank order the data according to any one of these X's. If a priori we are not
sure which X variable is oppropriate, we can conduct the test on each of -
the X variables, or via a Park test, in turn, on each X 0

Breusch-Pagan-Godfrey Test : : o

The success of the Goldfeld- Quandt test depend not only on the value of ¢
(the number of central observations to be omitted) but also on identifying
the correct X variable with which to order the observations. This limitation

~ of this test can be avoided if we consider the Breusch- Pagan-Godfrey
(BPG) test. '_ '
To illustrate this test, consider K-variable linear regression model-
Y =B +BX )+t B X g+ e (@)

Assume that the error variance 2 is described as

OF = F(0 + 0,25, + et O Z, ) eveeevnennenns (@)

16




that is ‘oZis a linear function of the Z's. If
0, =0, =....=0, =0; o =0, whichisaconstant. lerefartotc_st' |
whether g2is homoscedastic, one can test the hypotiiesis that
0, =0 =......= O =0 This is the basic idea behind the Breusch-

Pagan-Test. The actual test procedure is as follows.
~ 1step- Estimate (ai) by OLS and obtain the residuals & ,,4,,...... 8,

2step- Obtain §° = ¥ § 2/n (tiuszsthemaxnnmn(ML)eswnatorof 52 )
Step3: Construct vanable-pi, devined as p, =i2/&*
which is simply each residual disided by &
Step 4 : Regress p, thus constructed on the Z's as
P =0+ 06 Zy Honeent O Zgy +V; oo (@TV)

Where v, is the residual term of this regresion ; _.
Step 5 : Obtain the ESS (explained sum of’ squa:es) from (a iv)and deﬁne

(ESS)

Assuming uare normally distributed, one can show that if there is
homoscedasﬁcny and 1f the sample size n increases indefinitely then

©aSyX;,

thatis, @ follows the chi-square distribution with (m-1) degrws of
~ freedom. (Note: asy means as asymptotically). i

Therefore, if in an application the computed © = {x* ) exceeds the critical

x? value at the choosen level of significance, one can reject the hypmhesm
of homoscedasticity, otherwise one does notreject it.

White's General Heteroscedasticity Test :

Unlike Goldfeld Quandt test, which requires reordering thc observanons

with respect to the X variable that supposedly caused heteroscedasticity or

the BPG test, which is sensitive to the normality assumption, the general
test of heteroscedasticity proposed by White does not rely on the normality

assumption and is easy to implemeat. As an illustration the basic idea,
" consider the following three-variable regression model (the generalization
-of the k-variable model is straight forward).

Y =B+ By Xy # B Xy + e (1)
The white test proceeds as foliows—
Step 1: &venﬂmdata,wecsﬁmatc(l)andobtamtkeremduais i,

Step 2 : We then run the following (aw;i]ia:y) regression i

17




0 =0t + 0L X+ 0L X + 00, X3 +0LXE + 0L Xy Xy, +V, cvverenn )
That is, the squared residuals from the original regresion are regressed on
the original X variables or reggressors, their squared values, and the cross
product (s) of regressors. Higher power of regressors can also be
introduced. Note that there is a constant term in this equation even though
the original regression may or may not contain it. Obtain the R? from this

(auxillary) regression.

Step 3 : Order the null hypothisis that these is no heteroscedasticity, it can
be shown that sample size (n) times the R2 obtained from the auxilliary
regression asymptotically follows the chi-square distribution with df equal
to the number of regressors (including the constant term) in the aw«:xlhary
regression. .
‘ Thatis - nR:ryzxzdf sasaldy

In our example, there are 5 df since there are 5 regressors in‘the auxilliary
- regression.

Step 4 : If the chi-square value obtained in (3) exceeds critical Chi-square
“value at chosen level of significance, the conclusion is that there is
heteroscedasticity. If it does not exceed the critical chi-square value, there
is no heteroscedasticity, which is to say that in the auxilliary regression,
O, =0; =0, =0 =0, =0

A comment is in order regarding the White test. If a model has several
regressors, then introducing all the regressor, their squarded, and higher
powered and also cross product, quickly consume degrees of freedom
Therefore one must exercise caution using the test.

Due to above cause White test can be a test of (pure) heteroscedasticity or
specification error or both. If no cross product term are present in the
W}ute test then pure heteroscedasticity or vice-versa.

Remedial Measures :

" As we have seen, heteroscedastncnty does not destroy the unbiasedness
consistancy properties of the OLS estimators, but they are no Iongereﬂimm!,
not even asymptotically (i.e. large sample size).

Two approaches : _
When g; is known : the most straitforward method of correcting

heteroscedasticity is by means of weighted least squares, for the estimators
thus obmmed arc BLUE, :

When of is not known :

White's Heteroscedasticity - consistant variances and standard Errors—
White has shown that this estimate can be performed so that asymptotically

18




valid (large-sample) statistical inferenses can be made about the true
parameter values. Incidentally white's heteroscedasticity-correeted standard
errors are also known as robest standard errors.

Example :- We quote the following result from Greene.

Y, =832.91-1834.2 (Income) +  1587.04 (Income)’

OLS se =(327.3) (829.0) (519.1)
t =(2.54) (2.21) (3.06)

White se = (460.9) (1243.0) (830.0)
t =(1.81) (-1.48) (1.90)

Where Y=per capita cxpenditure .... public schools by state in 1979 and
Income = per capita income by state in 1979. The sample conmsted of 50
states plus washington D.C. :

As the preceding result show, (White's) heteroscedasncxty-correcwd
standard errors arc considerably larger than the OLS standard errors and
therefore the estimated 't' values are much smaller than those obtained by
OLS. On the basis of OLS both of the regressor are statistically significant
at 5 percent level of significant. But on the basis of white test they are not.
However it should be pointed out that White heteroscedasticity <orrelated
' _standardmorcanbelargerorsmaﬂerﬂlanﬂleuncomlatedstandardemm

Plausible Assumptmus about Heteroscedasticity Pattern:

Apart from a being a large sample procedure, one drawback of the white
procedure is that the estimators thus obtained may not be so efficient as
thosc obtained by methods that transform data to reflect specific types of
heteroscedasticity . To illustrate this, ]et us request to the two vanable
regre.ssxon model :

Y, =B, +B.X; +u;
We now consider saveral asszmpﬁon about the pattem of hetdoswdastmty

Assumption 1. .
The error variance is poportional to X? i,e
Bl i=o®X s (1)

It is believed that the variance of u. is poportional to the square of the
explanatory variable X. One may transform the original model as follows.

Divided the original model throughby X, .
Y, _ p u; -
'Ef"“flfrﬁﬁfi e (1.a)

=B + +B,+V  where v, isthe transfonned distrubance

“terms, equal io % . Now it is easy to verify that
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Hence the variance of v, is now homosecdastic, and now we may pmcwd

to apply OLS to the tmnsfonned equation 1(a), regressing A» on }é(‘ .
Notice that in the transformed regression the intercept term ﬁz isthe stope

coefficient in the original equation and the slope coefficient B, is the

interuption the original model. To get back theongmal model we shall have
tomultlplythe estimated 1(a) by X,

Assumptmn 2:
The error variance is poportional to X, . (The square root uansformatxon)

E(u?)=0’X rn2)

Ifit s believed that the vaziance of u,, instead of being proportional to the
squared X, is proportional to X, itself,

Then the original model can be transformed as follows

T" \/—"'ﬁa\[_"' 3B
=Q—J§Z—+Bz.\[§:+vi :

* Where v, =u, /X, and whete X, >0
Given assumption 2, one can readily verify that E(vf‘)= c’,a
homoscedastic situation. Therefore, one may proceed to-apply OLSto -
2(a) regerssing Y, ZJ- on 17,/X, and JX, .

Note an important feature of the transformed model : It has no mtemept
term. Therefore, one will have to use the regression thmugh the ongmc

model to estimate B, and B, - Having run. _
2 (a), he can get back to the original model simply by multiplying by 2(a) by

/X

Assumption 3 : '
T?wennrvmancexspoporﬂonaitoﬂlesqumofﬂzcmeanvalwoﬁ
E@)=cEY)F = . 3)

Equation (3) postulates that the variance of u is poporl:lonal tothe
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square of the ekpected value of Y. Now,

E(Yi )2 B +B.X,
Therefore, if we transform the original equation as follows :

Y; _ Bl +B_ X.i % u; _
EQY,) EQY,) CE() E(X) @

“"{E(Y )]*B= B

Where , v, =u,/E(Y,) it can be seen that E(v})=c"that is, the
distribances v, are homoscedastic. Hence it is regrassion 3 (a) that will

- satisfy the homoscedasticity assumption of the classical linear regression . -

The transformation 3(a) is, however, inoperational because E(Y,), depend

upon f,and B, , which are unknown. Of course, we know ¥, =B, +§,x,

which is an estimator of E(Y ). Therefore we may proceeds in two steps.
nstmnm&musualOlSregrwmmdiswgardmgﬂmhemroscedasncuy

problem and obtam X
Then, using the estimated ¥, , we transform our mode} as follows :
1 X
~—i=ﬂ,-§:+ﬁz[?ﬂ+ Vi 3(b) |

Where v, =(u,/Y;)

Step 2:
We run regression 3(b) Although ‘SE‘ are not exactly E(Y), they are

consistant estimators, that is as the sample size increases mdeﬁmtely, they
converge to true E(Y)).

Assumptiun 4: A log transformation such as

InY, =B,+B, In X,+u, eren(B)
very often reduces heteroscedasticity when compared with the regression
Y; =B, #B,X; +u, :

This result arises because Mgmformatlonoomprmmescalm in which

- the variables are measured, thereby reducing a tenfold difference between
two value to a twofold difference. Thus, the member 80 is 10 times the
number 8, but in 80(4.3280) is about twice as large as In 8=(2.0794).

_ Anadditional advantage of the log transformation is that the slope coefficient
B, measures the elasticity of Y with respect to X, that is, the percentage

change in Y for a percentage change in X.
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Example : If Y is consumption and X is income, B, in(4) equation will
measure income elasticity, whereas in the original model f8, measure only

 the rate of change of mean consumption for a unit change in income. It is the
reason why the log model are quite popular in empirical econometrics,

15 Autocorrelations : Test & Solutions ,
Thmamgemraﬂyﬂmtypesafdatathatareamﬂqbleibrimpmcal analysis
(i) Cross sectional (ii) time series and (iii) combination of cross section and
time series which is also known as pooled data.

Cross sectional data are often plagued by the problem of heteroscedasticity.
But the situation however likely to be very different if we are dealing with
time series data, for the observations in such data follow as natural odering
over time so that successive observations are likely to exhibit
intercorrelations, especially if the time interval between successive
observationsis short, such asaday, a week, or amonth rather than a year. .
Obviously in situation like this, the assumptions of no auto, er serial
correlation in the error terms that underlies the satisfaction of CLRM will
be violated. Under both heteroscedasticity and autocorrelation the usual .
OLS estimators, although linear, unbiased, and asymptotically (v, e, in large
samples) normally distributed, are no longer of minimum variance amongall
- linear unbiased estimators. In short, they are not efficient relative to other
linear and unbiased estimators. Put it differently, they may not by BLUE. As

aresult, the usual t, F, and x> may not valid.

1.5.1 The nature of the Problem ;
The term auto correlation may be defined as "Correlation between member
of series of observations ordered in time [as in time series data] or.space
- [asin cross-sectional data]." In the regression context, the classical linear
regression model assumes that such auto correlation does not exist in the
disturbance u. Symbolically-
E(uu,)=0 i#j

Classical linear regression model (CLRM) assumes that the distrubance
term relating to any observation is not influenced by the distrubance term
relating to other observations. : ' '

Let us visualize some of the plausible patterns of auto-and non auto
correlations, which are givem in following figure- Fig 1 shows a pattern. Fig
2 and Fig 3 suggest upward and downward pattern and Fig 4indicate that -
both linear and quadratic trend terms are present in the distrubances. Only
Fig 5, indicate no systematic pattern, supporting the non auto correlation
assumption of the CLRM. iy ,
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Héwever, if there is such a relationship (dependance), we have
autocorrelation. Symbolically- E(ﬁiu | );e 0 i#j

In this situation, distrubance term relating to any observations is influenced
by the distrubance term relating to any other observations.

The term "autocorrelation” and "serial correlation” are treated synomymously,
but some authors prefer to distinguish the two terms. For example i, Tinther
defines auto corrclation as "lag correlation of a given series with itself, lagged

by a number of time units," whereas he reserves the term serial
antocorrelation to "lag correlation between two different series.”

For eg.- autocorrelation between two time series such as WM, i Uiy
and w,, u,.......3,,. where the former is the latter series lagged by one time
period.
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Correlation between two time series such asu u,...u andv, v, Vu’
where "U" and 'V’twodlﬂ‘eremtune series, zscalledsenalantocorrelah

1.5.2 Causes . :
There are the following causes why autoconelahon ocours as follows-
Inmertia : Inertia or sluggishness is the salient feature of most economic
- problem. For instance, Time series like GNP, price indexes, production,
employment, and unemployment exhibit (business) cycle. Therefore, in
- regressions involving time serios data, successive observations are hkelyto '

be interdependent.

Specification Bias : Excluded Variable Case :

In empirical analysis the researcher ofien strats witha plausible model that
may not be the most ‘perfect one. After the regression analysis the researcher
does the postmortem to find out whether the result accord with a priori

expectation. If not surgery isbegun. _
Anexample :- Suppose we have following demand model ;
Yo BB, X + 85X B, X U, e (1)
Where Y'* quantity of beef demanded, X;pnoe of beef X,=consumer
X =price of Pork and t=time, for some reason we run following

:egressmn -

YBB X 4Kty @
Ifmodet (1) is correct than in the model (2) we are letting v, =B, X,,, +u,.
And to the extent the price of pork affect the consumption of beef,, the

error or distrubance term v will reflect systematic pattern, thus creatmg
(false) autocorrelation.

Speéiﬁcd_ﬁon Bias : Incorrect Functional Form :
Suppose the 'true’ model in a cost output study is as follows -
Marginal cost= B, +f, output + B, output ™+, ......(1) but we fit the model
as _
- Marginalcost =or, + a1, output + v, .......(2)
Model (1) shows us quadratic relationship but model (2) shows us linear
relationship due to which disturbance term v, whlch is in fact equal to
- outputHy w1[l reflect autocorrelation.

Cobweb Phenomenon : _
This situation arise in cash of many agricultural commodities, where supply

reactsto price with alag of one time period because supply decisions take
time to implement. Thus, at the begining of this year's planting of crops,
farmers are infhienced by the price prevaling last year, soﬂmtmpplyﬁmcaon
IS-—

Supplyt, B, +B2Pt_,+u‘t I | |
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Suppose at the end of the period t, price P, tutns out fo be lower than P,
,» therefore, in period t+1 farmers may very well decide to proceduce less
than they did in period t. Obviously, in this case U s are not expected to be
~ random and thus leading to autocorrelation. '

Lags: : : _
In regression of consumption expenditure on income of time series data,
" weall generally found that the consumption expenditure in the current period
depend upon consumption expenditure of the previous period also. 2
Consumption, = B, +8, Income, + B,consumption,, +u, ... wene(8)
Such regression like (a) is known as autoregression because one ofthe
explanatory variable is the lagged value of the dependent variable and if we
" neglect the lagged term the resulting error term will reflecta systematic
pattern. - :

'Manipulation' of Data:
In empirical analysis, the raw data are ofien "manipulated”. For example,
quarterly data are obtained from monthy data by adding three monthy
observations and dividing it by 3. It leads to introducing autocorrelation.
Another source of manipulation is interpolation and extrapolation of data.
Data Transformation: =~ -

Let us consider the following model -

Y, =B B, X, 40, e ) |
Where Y= consumption expenditure and x=income since (1) hold true at
every time period, it holds true also in the previous time period, (t-1) so we
can write-(1) as

Y, BB, X tu. Y - (la)

Y, . X, .y, arcknownas lagged value of Y, X and urespectively, -

“here lagged by one period. '

Now if wesubtract1(a) from 1. we get

AY, =p,AX, +Au, srseies 1{D)

Where A is known as first differenc operator. Let us take successive
differences of the variables in question. Thus -

AY, =(Yl _"’l—l)"&xl =(Xt;xt—l) and Au = (“: "um)

We can rewrite 1(b) as- '

AY, =B,AX,+V, ....... 1(c) where v, =Au, = @w,-v.)
equation 1(c) is known s the level of form of 1(b) and as the (first) difference
fomﬂisélsulmownm;dynmnkmgrmsimnmdtls,ﬂmis,nmddsmvomg :
lagged regressands. o

Nonstatisnarity : : -
When&xeﬁmseﬁesamnons{aﬁonazyﬂmealsomiseamocmelaﬁon.
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1.5.3 OLS Estimator in Presence of Autocorrelation
We used a two variable linear regression model to explain the basic idea

involved, namely, Y, =B, +B,X, + U,. CLRM assumption about u, namely,
for _E(u, ~u,,, }#0(s #0), is too general to be.usedpracﬁcally.
Generally when autocorrelation present we assume simple first order
autocorrelation in linear form -

u =pu_ +¢ -l<p<l eveenee (1)

Where p: isinanasthccoeﬂicientofautocovaﬁameandwhm g, isthe
stochastic distrubance term such that it saﬁsﬁes OLS assumptton— '
E,)=0
Var (g, )= o’
Cov (El’aii‘s): 0 S $O
In the engineering literature, an error term with the preceding properties is
often called a white noise error term. _ _
Equation (1) is also known as Markov-first order antoregressive scheme.

Generally the p, the coeffiecient of autocovariance can also be interpreted
- as the coefficient of autocoreiatlon atlagl. : ;

p, = E {lu, _E(u:)I“:-J "‘F(ut—:)]}
: JVar (u‘}JVar (u 1.—17

_E@u,)
~ Var(u b ;
Since E(u)=0 for each 't' and var (u )= var (u,_,) because we are retaining
these assumpnon of homoscedasticity. :
Given AR (1) scheme, it can be shown that

 Var(u) = B(uf =

o

Cov (u,,u,,.)=E(u,u, ) =p’ )
Cor (ul,um) =
Where Cov (u,, “m) means covariance between error terms penods
apart and where cor (u,;u,,,) means correlation between error terms
periods apart. Note that because of property of covariances and corelahons,
Cov (u,,u,,,)=cor (u,,u,;,) and vice-versa.
- Since p is aconstant between -1 and +1 it show, under the schemeAR(l),

the variance of u,is still homoscedastic butu is correlated not only with its
immediate pastvalue but many severalpenod inthe past.
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When [p| <1, we say the that AR(1) process given is stationary.

Now the two variable model Y, =p,+8,x, +u,. Weknow that the OLS
estimator of the slope coefficient is

s Tig .
Bz=§x~§-_ ()
and its variance is given by-
a, i
Var(B ] w2 @

Where the small latter as usual denote deviation from the mean values.
Now underthe AR (1) scheme the variance of this estimators can be shown
as- - | '

ZZx )1;_2 aml XX

g?] w3

| Var[Bz)ARué [HZ{) 34 +2p +2p
Where Vﬂf(ﬂg )ARi means the variance of §, under the first order

autoregressive scheme.
When we compare the OLS variance and AR(1) variance, we show that
the former is equal to the latter times a term that depends on p as well as

the sample covariance between the values taken by the regressor X at
variuos lages. And in general we can't define whether is greater or lower

than AR, ﬁ;) |
The reduced form of the two variances is

e orSfize) (i pf(28) oo

It, for example, r =0,6 and p=0.8 using formula (A) we can

~ check (Bg}AR(i) =2.8461 Vﬁ{ﬁgj OLS. To put it another way,

A _ 1 A _ ; A :
Va:[Bz]OLS T '\f.'cu'[[.ai2 )AR(I) = 03513 V.ar[B? )AR(I) _This

'is the usual OLS formula which will underestimate the variance of

[Bz ] AR(D) by about 65 percent, as we know that the result is spesific for
the value of Y and p.
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Consequences :
OLS formulas under the presence of autocorrwlanon, to compute the

. variances and standard errors of the OLS estimator could give seriously -
misleading answer.
In others words the OLS estimators in presence of autocorrelations gives
unbiased and consistent estimators but not minimum variance i,e

Var[fii;}é\far[ﬁz] AR (1)

. Detecting Auto Correlation :
I) Graphical Method : The assumption of CLRM of non automlanon
relates to the population distrubances u,, which are not directly observable.
Aswe know 'u are not directly observable we use proxies of u,.

There are various ways of examining the residuals. We can simply plot
them against time, the time sequence plot. Alternatively we can plot the
standarlized residuals against time,

To see it differently, we can plot 1, against ﬁt_i,thaiis, plot the residual at
ttme’t'agaimttheirva!ucatﬁme(t—l),akindofempiricaltestofﬂleAR(l)
The graphical method, although powerful and suggestive, is sub]ectlve or
qnahtatwcmnmmc

"l'l) The Runs Test :

-When there are several residuals that are negative, then there are several
residuals, which are positive, again there are several residual that are negative.
- If'this residuals were purely random, could we observe such a pattern (like
inverted U)? Itits unlikely. This situation can be checked by the so-called
run test, sometimes also known as the Geary test, a nonparametric test. Let
us note down the sighns such as (+ or -). sign-
(----- ) (++++++++++)( ------ )

of th,e residuals in the regression.
N.B. 1 See Damodor N Guijrati & Sangeetha for example.
- Now Let

N= total number of observations =N +N,

N,=number of +symbols (i,e + res:duals)

N number of - symbols (i, e - resxduals)

R number of Runs.
Under the Null hypothesis - Successive oﬁcomc (residual) are mdependmt,
and assuming that N.>10 :mdN >10. The number of runs m(zs)mptoacally)
nomaﬂydlsmbmwmih

Mean E(R) = NNN“‘ +1
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IN,N, (2N,N,-N)

(NY (N-1)

Vanancc a; =

Note N =N,+N,
If the Null hypothesis of randomness is sustainable, following the properties
of the normal distribution, we should expect that

Prob [E(R)-1.966, <R SE(R)+1.960; =095

In95% cases, the preceedmg interval will include R.
In general, If there i is positive autocorrelation, the number of runs will be
few and if there is negaﬁvc autaconelanonthe number of run will be many.

1IT) Durbin-Watson d Test : The most popular test for detecting

" autocorelation is Durbm~Watson d test, Also known Durbin-Watsond -

sta!lstlc

_- Et‘—-:n A 4
= '"2(;2“2‘ o %)

=271
i, the ratio of sum of squared differences in successive residual to the RSS.
Inthe numerator of 'd" statistic, number of observation is (n-—l) because :
: onelostmtakmgsucc&smvedjﬁercnccs

Assumptions :

1. Theregression model includes the intercept terms. If it is not present,
as in case of regression through the origine, it is essential to rerum the
regression with intercept to obtain the RSS.

2. The explanatory variables the X's are nonstochastic, or fixed in
repeated sampling.

3.- The distrubance term follow first order autoregressive scheme

u,=pu, +€,.
The error term u, is normally distributed.
The regression model does notinclude lagged variables of explained
and explanatory variables.
6. There are no missing observations in the data.

- Now Expanding (1) we get-
Zﬁtz il 2ﬁ:z—l il nﬁiﬁt—i

; zﬁf ) -.-.---T (2)

ol o

d=

Since Zﬁf and Eﬁfwl differ in only one observations. They are
_ el
Therefore 242, ==sEl.12
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d Zid., ) |
déz{l--ﬁs—'] S 3

Reject H, Zone _ - ' Zone | Reject H,
Evidence of e o Evidence of
positive '?;?ﬁﬁ' inde- | Tnegative
auto ' cision auto
correlation ' : -1 correlation

€< N
- Cal

.| Do not reject Ho of
H, or both

o dy d, 2 4-d, 4d, 4

H_ =No positive autocorrelation

H;=No negative autocorrelation

» Zd.8 |

Now, leus take p = ——--—+
zu,

asthe sample first-order coefficient of autocorrelation, an estimator

d= 2(1-DJ e (5)
Butsince —1< p <1 implics that

0<d<4 e (6) |
These are bounds of d, any estimated d value must fie within thcsc limits.

of p.

When, p -0 d=2.Noserial oorrelaton
E, — +1 d = O Perfect positive correlation

B =—-1d=4 Perfect negative correlation.

Mechanism of Durbin-Watson Test :
1) Runthe OLS regression and obtain the remduals
2} Computed froml.
3) Forthe given sample size and given number of explanatony variables,
find out the critical d, and d_ values. _
4) Now follow the decmon rol_e given in the table.

30 -




Table1:

Null hypothesis Decision If

No positive autocorrelation  Reject 0Ldzd,

No positive autocorrelation . Nodecision . d,£d<d,
' Nonegativeautocorrelation  Reject 4-d,/d24
-Nonegative correlation - Nodecision  4- d, £d<4-d,

No autocorrelation, Positive/negative Do notreject d £dZ4-d,

The drawback of the Durbin-Watson d test is that, if it fall in the indecisive
zone, one cannot difine whether 1st order autocorrelation exist or not. So
many author modified 'd' test and given the following decision.
. H,: p=OversusH;:p>Oreject H at o level if dzd, . Thatis there
is statistically significant positive autocorrelation.

-2. H_ : p=0 versus H;:p<O, reject H_at o level if the estimated
(4-d) 2, . Thatisthere s statistically significant evidence of negative
autocorrelatmn

3. H :p=O versus H:p# O rejectH at2a level if d<du ,or(4~d)

Zduthatis, there is statistically significant evidence of; autoooxreiatmn,
positive or negative.
Durbin-Watson developed so-called h test to test serial correlation in such
model where lagged values are available.

A General Test for Autocorrelation :

The Breush-Godfrey (BG) Test : Bteush-(}odﬁ‘ey have developed a

test of autocorrelation that is general in the sense that it allows for (i) non
- stochastic regressors, such as the lagged values of the regressand (ii) higher
~ order autocorregressive schemes, such as AR(1), (iii) and AR(3) simple or
higher order moving average of white noise error terms.
Two variable regression model to illustrate the test— o

"Bl +ﬁz X, +u, k] )

Assume that the error term U, follows the P* order autoregresswe, AR(P),
scheme as follows-

U =0,U,. lJrﬁr2 ca Pt Pl FE, | e ) .
Where ¢, - white noise error term. '
The null hypothesis H_to be tested is that
_ Hy 10,5P 2= e ey = O R
That s, there is no serial correlations of any order. The BGt&slmvoives the

following steps :-
1) Estimate (1) by OLS and obtain the residuals d; .
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2) Regress i, onoriginal X, and §,_;, 8, _y......0, 0, , . Where the latter
arelaggedvaluesoftbeeﬁmatedresidualsinstepl.

A A A

U =0+, X AP+ P, + e Ppli-p+E, creeeees (4)

and obtain R? from this (auxillary) regression.
3) If the sample size is la:ge (technically, infinite), Breusch and Godfrw
have shown that :

(-pR* = —c
That is, asymptotically, n-p times the R? value obtained from the auxilliary
regression (4) follow chi-square distribution with P df. If (n-p). R? exceeds
Chi-square value at the choosen level of significance, we reject the null

hypothesis, in which case, atleastonerho(Z)lsstahsnntacaﬂys:gmﬁca:ﬂy
different from zero. '

Remedial Measures :

Model Mis-Specification versus pure Autocorrelation :

. Sometimes autocorrelation arises due to mis specification of the model.
This mostly happens in case of time series that trend of the series were

. Letthe example,

Y <29.5192 +0.7136 X, e 2)
Se = (1.9423)(0.0241) -
 t=(15.1977) (29.6066)

- 1 =0.9584 d=0.1229 6 =2.6755
Now if we include the trend variable then we get-

Y. =14752 +1.3057 X, - 0.9032 Y
Sc = (13.18) (0.2765) (0.4203)
t=(0.119) (4.7230)  (-2.1490)

: R*=0.9631 d=0.2046
The intrepretation i strait forward over time. The index of real wage has
been decreasing by about 0.90 units per year. The interesting point with
allowing for trend variable, the d value is still very low, suggesting that (2a)
suffer from pure autoccorrelation not necessarily from specification error.
To test the correct specification we regress Y on X and X2 to test the
posibility that the real wage index may be nonlinearly related to the

productivity index.
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Correction for Pure Autocorrelation The Method of Generalised
Least Square (GLS): ’ |
As the OLS estimators are inefficient in presence of autocorrelation, we-
may need to solve the problem. It depends upon nature of interdependence

among the distrubances.
Letus consider two variable regression model :
Y, BA4B,X 40, e (3.1)
Assuming that the error term follow the AR(1) scheme, namely
U, =pu,_ +¢ =1ZpZl sl ey

Now we consider two cases, (1) p isknown (2) p is not known but hasto
be estimated. ] ‘ i

‘When p is known :- ;o

If co-efficient of the first-order autocorrelation is known, the problem of
autocorrelation can easily be solved. If 3.1 hold true at time 't' and also at
(t-1).

Y, BB, X tu saws3:3) -
Multiplying p both sides of (3.3) by p, we obtain,

pY =oB+pB. X +pu, e 34
Now substracting 3.4 from 3.1 gives

(Y, ~pY, ) =B - p)+B, (X, — X JHE e (3.5
Where Et - (].1: _put-l) .
Now we can rewrite 3.5 as-

Y, =8 +8X] +¢&, PR . )

Where B; =B,(-p); Y. =(Y,-pY,.): X = (X, -pX.. }B; =B,

Since error of 3.6 satisfies the usual OLS assumptions, we can apply OLS
to the transformed variable Y* and X* and obtain estimators will all
properities, namely BLUE. Now GLS is nothing but OLS applied to the
transformed model that satisfies the classical assumptions. -
Regression 3.5 known as generalised, quasi, difference-equation. In the
difference process we lose observations. To avoid this lose of observations,
the first observations on Y and X is transformed as follows. .

Yﬁ}l—pz a;ld Xl,h_p’;‘ -This transformation known as the
Prais Winstern transformation.

When R is not known : The First Difference Method :
Since p lies between O and + 1 . One can start from the extreme position.
When p =0 no serial autocorrelation, when p=1 perfect positiveand p=. '
- —1 perfect negative autocorrelation. At first we run aregression assuming
no autocorrelation, then let the Durbin-Watson or other test to justify the
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assumption. When p +1, the geﬁcraiised difference equation.

Yk . th “—"BZ(Xl '_X:-.-i)+ (ul i ut~l) . .

| AY, =B,AX, +¢, wreerees 3.7
Now error term €, ~ free from serial autocorrelation.
But it is interesting that in the first difference model, there is no intercept
term. We have regression through the origine. But if we forget to drop the
intercept term, then the model is—

AY, =p,+B,AX, +¢, siies 3.8

The original model must have atrend init and 3, represent the coefficient
of the trend variable. The accidental 'benifit’ to introduceé the intercept term :
is to detect for the trend variable in the original model.
Another important aspect with the transforming to ﬁrstdiﬁ'erenoemeﬁm is -
that the error term series became stationary i,e
u t‘= u., +g, |
(u, ~u,, )= Au, =¢,, thepointis thatthcoxiginaltime
series was non stationary but first difference became stationary.
The first difference method may be appropriate if " p " is high and "d" is low.
It is valid only when p= 1. To test it there are B - Webb test, to test the:
hypothesis that p=1. The test statistic they used called g statistic which is
define as follows-
' N2
_Xe
e

_E:ll,h

{i - OLS residual from the original regression. .
€ -residual from 1st difference regression (keep in mind there are no
;mercept in the 1st difference model.)
To test significance of a statistic, assuming that the level form regression
contains the intercept terms, we can use Durbin-Watson table. Except that
now null hypothesis is that p =1 rather than Durbin-Watson hypothesis

that p=o.

1.6 SummingUp

In this unit,'we have learned about Gcnc;mlized Least Square estimation
methods. This method is mainly used when the assumptions of the Classical -
Linear Regression model are not fulfilied. After applying GLS the Regression -
model fulfils all the classical assumptions and then the estimation is done.
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Again we have also learned the problems of Heteroscedasticity and
Autocorrelation. Here, we have discussed about their causes, various
detection processes of the two along with graphical methods.

LT

1.8

Self-Assessment Questions

. GLSisOLS on the transformed variables that sahsfythc standard
' least squares assumptions. Discuss.

. What are the causes of Heteroscedasticity. Discuss any of the tests

of detecting Heteroscedasticity.

. Write the main causes of Autocorrection. What happens when we

apply OLS in the presence of Autocorrelation?

- References/Suggested Readings
. Johnston, J., “Econometric Methods”, McGraw Hill.
. Gujarathi. D., “Basic Econometrics”, McGraw Hill.
. Pindyck and Rubinfeld, “Econometric Modeis and Econometric

Forecasts”, McGraw Hill.

4. Greene, William, “Econometric Analysis”, Macmillan.
. Johnston and Dinardo, “Econometric Methods”, McGraw Hill.
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- 2.3 EstimationoftheNon-Linear RegressionModel
23.1 Herative Linearization Model -
2.3.2  Models with Binary Choice Dependent Variables .
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2.3.4 Probit Model
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20 Introduction ' _

The major emphasis of this book is on linear regression, that is mode] that
are linear in the parameter/ model that can be transformed so that they are
linear in parameters. On occasion, however, for theoretical or empirical
basis (reason) we have to consider models that are non-linear in parameter.

21  Objectives - ‘ : -
This unit mainly aims to illustrate the concept of non-linear regression model
and its application- : % 4 :
®  Estimation of non-linear regression model;
e Usingbinznychoicedqmdentvariablemodeiﬁxmnonwﬂics;mﬂ
® Concepts about Logit and probit model and its usefullness.

2.2 Meaning and Structure of Non-Linear Regressioﬁ Model
In this book we will basically discuss about the models that are linear in
parameters, but they may or may not be linear in variables. Some model
look like non linear in the variables but are inherently or intrinsically linear
because with suitable transformation, they can be made linear in the
parameter regression model.

Example:Y =a +bln x v (\

Anotherexample : Y =B, +f, x, +8,x2,
but we can linearise it as- _ B

Y =B, +B,x, +B,z Where z=x?
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But if such model cannot be linearized in the parameters they are called
instrinsically nonlinear regression models. We are talking about inherenthy
orinstrinsically non lincar model (LNRM).
Tntrinscically linear Model : (C-D) production function-
Q = AL°K" '
InQ=Inh A+o inL+f nK
Y = v+oX, +PX,
Q=Output, L=Ilabour input
K =Capital input A= Constant

Intrinsically non inear functionis the constant elasticity of substitution (CES)
production function - .

Y, = A[6k;® +(1-8)L ]% | :
Y= output, K=Capital input, L= labour input A= scale parametet,
§=distribution parameter (O< §<1), and B =substitution parameter
@|=-1.

Estimation of NLRM : o
To undettand the difference of estimation of NLRM, consider the following
two models - | '

Y, =+, X +y, — |
Y, =B,e™" +y, . i

We all kniow 4.1 is a linear regression model and 4 2 is a nonlinear regression
model. Model 4.2 known as exponential regression model and often used
to measure growth ofa variable, such as population, GDP or money supply.

Now suppose we consider to estimate the parameters of the two models
by OLS. And we try to minimise the RSS of4.2. The normal equation we
get are as follow : (By OLS estimation method)

TY S PPN e 43
E_Yixieﬁ”“ = é\l Exjezﬁz"* N X
The normal equation model of nonlinear regression have the unknowns (the

fis) both on lefthand side of the equation s well as on the right hand side.

Asa consequence, we cannot obtain explicit solution of the unknowns in ‘
- terms of known quantities. Incidently, OLS applied to anonlinear regression
model is called nonlinear least squares (NLLS).
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23  Estimation of the Non-Linear Regression Model

2.3.1 Iterative Linearzation Model .

In this model we linearize a nonlinear equation around some mttlal valuw of
parameters. T}whneahzcdequauomsﬂlmesamatedbyowmﬁthemmaﬂy
- chosen values are adjusted. These adjusted values are used to relinearize
the model, and again is estimated it by OLS and readjust the estimated
values. The process is continued untill there is no substantial change in the
estimated values from the last couple of interations. This process is known

as "Taylor series expansion” from calculas.
- Let Y=f{X)+u, this can be approximated around x=a, and using tylor'sis

espanszons—

Y=f()+(x-a)fa)+E=2 La) f()+(" ) @)t

mwxgmnngtl’xetmmmvolmlg Qzﬂmldhxgtwmdexdlﬂ'mmauon,
The taylor’s expansions becomes—

Y=fla)+(x- a)’(a)+u
Y=§@)-at@)}+ %f(ca)}ru

Y= C mx _
- Y= mx+ctu or ctmx-+uy, is a linear regression model.
Now we can expand it for 'K' variable regression model.

Let Y=f(X,X,....X, ) X=a

== approximal J

f(a 4.4 )+(X al)—ai{alaz _
(xz—az)-——_f(alaz....a“ )7" (Xs'as )—(apa:s---an >+

te:mmvolvmgsecondand inghﬂrdlﬂ'emanon

Nowi ignoring 2nd & higher order we get-

. Y=f(aa,a, HE(x, -a, )§~f(a,a2'.....an) _
X

'Appllcatmn of this Functmn

and ignoring term including 2nd and hzgher ordre we obtain-
BiBef Jr 3o |2 BB )0
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Where E,_][_}zék are some initial value of [;ltéz,,_[;k 5 |
Now. *
B fsk]éﬂl (e b )-Ep (e s

Z. ) ' W

Z:= ZB;w, .

orZ = Z, =B,w, B, w,+.... +h, wtu-(A)

Now, Model A is a linear model.
The advantage of this method is that value of the final estimation can be
used for testing significane of the regression coefficient seperately by using
't values. We can also test the significance of the coefficient jointly by using
'F' value.
R? value will not be a measure of goodness of fit and R? will measure what
percentage of 'Z' is explained by the model.
But we are interested about Y, of the original model. The R?known as -

PR
_ K-%) _
R2=1_Z{ _, Rss

-Y¥ 7 TSS
Ys i .Yt .

2.3.2 Models with Binary Choice Dependent Variables
This model is used to explaine and predict the choice of an individual variable
with two alternative decission or choices. We have to used a dummy variable— .
Y=1 for the particular choice ;
Y=0 for the other.
The particular choice influenced by a number of factors may be captured in
the form of variable X..... X .
Y =L X, wul)
Suppose, _
Y, =B, 8, X, +o HBe X0 + ut_
=xpB+u,
LetY cantake'l' and '0’ with probablhtyPand (1-P)
E(Y,)=1xP +0x(1-P)=P
+0<P<1. 0<E(Y,)S1
[ncase of Linear function, these is no guarantee that E(Y,) will lie within 0
and 1. So, we transform the function as'F* such that F(X 8 ). ie

Y, = F(X )+ u,, now F(X ) canlie betwee O to 1 as x+p goes
from - o to+¢r. Here F is the cumulative distribution function.
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Let X is a continuous random variable then PDF of X is denoted by f{X).
Now if X is adiscrete random variable then we get specific value of probability
mass function for a given value of Xi, € P (X=a) =f (a) ;

But ificase of continuous random variable we does niot obtain specific value
forit, i, P (x=a) is not relevant because x lies between certain limit say a

and b, that is Plasxb)= jf(x)dx

wai{x):scaﬂedachﬂbuﬂmﬁnw&onandﬁdmwsﬂwmulaﬁwﬁequmcy
upto X=a, then

P(x<a)
Frog Fig

f@)= 6k)

x=—
=if{x}dx‘
Here f(~a)=0

f)=1 ie f(x)= jf(x)dx 1
Ifwemcreasemoremdmoreofxthenthsvalueofd:shaMonf{x)wﬂlbe
increased, so itis a non decreasing ﬁmctmn

Fig for function

fa)= D f(x)

- _ o
Now under the linear probability model.
-f(XlB)+ut,but f(Xp=0,iffXB< 0
-Xl,:f 0sXB<1
IX,B >1

_The above distribution of f (X ﬂ ) can be dmgra.lmatlcaliy representas
follows—
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- f(Xtﬂ 1 . e it ’ f (x ;ﬁ)

o —— b

The LPM is used in Linear regression model because if we use
OLS or GLS in non-linear regression model then it will be very complex. In
LPM the problem of hetéroscedasticity exists as all the points are
concentrated usually on Y=1o0r Y=0. .

2.3.3 Logit Model :
We take the example of home ownership in relation to income, the LMP
model- "
B =E(Y=1|Xi)=ﬁi+ﬁzxi - e (6.1)
X = income, Y= 1 means family own house. Now following
representation of home ownership- ' ' ;

P, =E(Y=1|X,)= e (6.2)

1+ e Pitan

We can reasite itas -

1 e

ol4e  14e®
Where Z, =p,+B,X; (6.3)
Equation 6.3 represent what is known as the (cumulative), logistic
- distribution function. Here z range from — .0 a,Pi_isnonlinearlytelated
to Z.. But we cannot use OLS procedure as it is a non linear the model in
terms of X and also 3. -

IfPi,isthepmbabilit}’bfownilighouse, then (1-Pi)is the probability

of mtowningtheheuse- ' '

d ;
1-P, = T— LT
1 1465 ' ©4)
Therefore we can write
P l+e” o »
_ml—Pi 1o crneenns (6.5)
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Now, the P, /(1 =P, ) is simply the odds ratio in favour of owning a house-
the ratio of the probability that a family will own a house to the probability
that it will not own a house, ' :

Now, if we take natural log of (6.5) we obtaina very interesting result

namely-
L= Ly ]: zZ,

1 I"'I)I

H4,X (6.6)
. that L, the log of the odds ratio, is not only linear in X, but also
linear in parameters. 'L' is called the logit and hence name logit model for
- model like 6.6.

2.3.4  ProbitModel ,
In some applications, the normal CDF has been found useful. The estimating
model that emerge from normal CDF such as ' '

a 1 0 il 4
F( x) - —{x-uy /12
: :’;32037:
is popularly known as the probit model, :
F is the standard normal CDF, which is wriften explicity in the present
context with an example- To motivate the probit model, assume that in our
home ownership example decision of the i family to own a house or not
depend on an unobservable utility index L, that is determined by one or
more explanatory variables, say income X, in such a way that the larger the
value of the Index Ii, the greater the probability of the family owing a house.
We express the Index Las- e
I, =B, +B,X, P 11 ) |
Where X is the income of the ith family. Given the assumption of normality,
the probability that I, is less than or equal to I, can be computed from the
standardized normal CDF as
Pi = P(Y =1| ")= P(I: <L )= P(Zl <Bt+ﬁzxi )‘_' F(ﬁl"'ﬂzxi') d7.2)
Where P(Y=1/x) means the probability that an event occur given the value's
of the x, or explanatory variables and where Zi is the standard normal variable
Z~N(0,0%)

1 H_.,,z
Now, F(Ii=72?je /2dz

-2 /zdz

_ 1 I 1+B2%; "
= 72-;; s _
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Since P represemts the probility thatan event will occur, here the probability
of owing a house, it is measured by the area of the standard normal curve
from —t to li as shown in Fig bellow-

P, =F(,
= {.) P, =F(I,)
, P, B E(l; <1) ’ ""/
| y

: 198
'_x : 1 3 _+c: S 3 - e W
1, =B, +8.x, I, =F7'(R)
(a) ' ()

a) Givenl, read F, from the ordinate
‘b)GivenF, [, read from the abscissa

2.3.5  Logit and Probit Model : A Comparision.
Even the logit and probit model gives us similar qualitative answer. Our
question is between Logit and Probit which model is preferable (7) In most
application the model are quite similar the main difference is that thelogistic
distribution has slightly fattertails, as shown in figure bellow. The conditional
probability Pi, approaches Zero at a slower rate in logit than in probit.

* Therefore, ther is no compelling reason to choose one over the other. In
practice many tesearcher choose the logit model because of its comparative
mathematical simplicity. !

A

Fig - Logit and profit cumulative distribution
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2.4  SummingUp
This unit was about Non-Linear Regression modelswhmmha:vebaswally
leamed about the meaning of non-linearity in Econometric models. Estimation
*- of NLRM through various models viz. Iterative Linearization Model, Binary
choice Model, Logit and Probit model. Among the four, Logit and Probit
models gives us almost similar qualitative answers but due to its mathematical
simplicity Logit has become more popular among the Economists.

" 25 -' Self Assessment Questions - !
. L Shpw“dthﬂwlmlpofcxamp}e'whymdaiswiﬁdlémmtmjﬁmﬁy
linear are not a big probiem in Econometrics.

2. Discuss the Logit model showing how the non-linear model is
estimated with the help of Logit. :

3. Whatis the main difference between Iogltalderobthodes?
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3.0 - Introduction _

Time lag play on important part of the economic applications. In formulating

an economic model, we have to consider both the current as well as lag of

time (past) value as incase of explanatory variable. In this unit we deal with
- that types of problem:

3.1  Objectives S
Autoregressive and distributed lag models, are used extensively in
econometric analysis, and in this chapter we take a look at such model with
“aview of finding out- __

@ Whatis the role of lags in economics

® What are the reason for the lags _

) Isﬂxerearemyﬁ)mﬁﬁcaljmﬁﬁcaﬁonforﬁwcommﬂyused lagged

models in emperical econometrics
e What is the relationship, if any, between autoforegressive and
 distributed-lage models? Can one derive one from other.

In Regression analysis involving time series data, If the regression model
includes not only current but also the lagged (Past) values of explanatory
variables (X), then it is called a distributed lag model.
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Ex-Y =a+f X +B8,X,, +|32Xt_2 +u,
Again if the model includes one or more lagged values of the dcpendcnt
variable among its explanatory vanables, itis called an autoregrms;ve model,
' Ex-Y, = +fx, +yY,_ ' -
also known as dynamic mndel. _

3.2  Roleof Time or Lag in Econometries ;

In Economics there is the dependence of a variable Y, (dependent variable)
on another variable (s) X explanatory variable (s) very often, Y responds to
Xwith alapse of time. Such a lapse of time is called a lag.

We may write K distributed lag model-

Y =a+fx, B, X B, X, +.. B X, k+u ...... 8.1y

Here- B3, - is know as the short run multiplier or impact multiplier, because
it gives the change in the mean value of Y following a unit change in x in the
same time period. (3, +$, ) for the next period and so on. The partial sums
are called interim or intermediate multipliers. Finally, after 'k’ period we
obtain -

Zﬁ =By B, 4B, +...+B,=B --{8.2)
It is known as the long run or total distributed lag multzp]xer provided the
sum B exists-

® - B _MB
Ifwedefine- Bi = -Z-B——B

- Itisthe "standardized" f, . Partial sums of the standarized p then gives
~ the poportion of the long run, or total impact felt by a certain period.

Example of Distributive Lag Model :
The Consumption Function:
Suppose a person received a permanent salary increase of $2000 in annual
- pay. Now what will be effect of this increase mcome of the person's
consumptions?
The person does not opend all increase immediately. Thus our recipients
may decide to increase consumption expenditure by $ 800 in thelst year
following the salary increase, by another $ 600 in the next year, by another
$ 400 in the following year, saving the remainder. By the end of the third
year, the person's annual consumption expenditure will be increased by $
- 1800. We can thus write the consumption function as-

Y =Constant +0.4X+0.3X +0.2X +u - ......(l)

Y= consumption expenditure and X is income.
Now, equation (1) shows that the effect of an increase in income of § 2000
is spread, or distributed over a period of 3 years. Such model is called

46




distributed lag models because the effect of a given cause (income) is spread
overatimeperiods. * B :
Using the definition of short un multiplieri,e short-run marginal propersity -
consume is 0.4 and long-ruri multiplier or long-run marginal propersity to
consume 0.4+0.3+0.2=0.9 i,e As income increase by $1 the consumer
spend40percentinﬁ:cyearofincr&asc,30percemmthemxtyearandby
20 percent in the following year. diagramatic Representative—

w 4
m ____________________________
. % _ ‘ g
Z
& ||8 2
x . 2
o
brd o
S 3
=
T
:
! y . i > Time
G
Example of distributed-lag

EffecionY = BpX.

o —mi w2 w3 w e

The effect of a unit change in X on Y at time t and on subsequant time

47




3.3  Reasons for Lags
Thmareseveralreasonsbuttheﬁmeemmnmasonsm -

1) - Psychological Reason : As aresult of the force of habit, people
do not change their consumption habits immediatly following a price
decreaseorperhapsmmmemcmasebecauseﬂacchangemayhave
some immediate disutility.

2) Technelogical Reasons : Suppose the price of capital relahvc to
labour declines, making substitution of capital for labor economically
feasible. Of course, the addition of capital takes times (gestation -
period). Moreover if the drop in price is expected to be temporary,

- they will not rush to substitute capﬂal for labour.

3) Imstitutional Reasons : These reasons also contribute to lags.
For ex:-employer often gives their employees a choice among several
health insurance plans, but once a choice is made an employee may
not switch to another plan for atleast one year.

34  Estimation of the Distributed Lags Model
Suppose we have foﬂomg dlstnbuted Iag model in one explanatory
variable—

Y, =By X, B K X b, ©.1)
Wchavenotdeﬁnedﬂmlmgthofﬂmlag,tbatlshowfarbackmmthepast
we want to go. Such model is called on infinite (lag) model.
Whmmemodelwhmthelengmofﬂaelaglsdeﬁnedﬂnslscalbdﬁmte
distributed lag model. ex-k-specified model.

341 AdHoc Estimation of Distributed Lag Model

Aswe assumed X is nonstochastic and atleast uncorrelated with distrubance
term, the X ,, X, , and s0 on, are non-stochastic too. Now we can apply .
ordinary least square method in the equation (9.1). This approach was
proposed by Tin berger and Alt. They suggested that to estimate on sequential
basis i,e first we regress Y, on X, thenon X, and X , and so on. The
sequentional procedure stop when the regression co-efficient of the lagged
- variables. Start becoming statistically insignificant or atleast coefficient of
one variable changes its signs as positive to negative or vice-versa.

For Example :-
- Altregressed fuel oil consumption Y onnew orders X. Basﬁdon&wquartﬁ'ly
data for the period 1930-1939, the result were following -
Y. =8.37+0.171X,
Y. =827+0.111X, +0,064X,_,
Y, =8.27+0.109X, +0.071X,_, —0.055X, ,
=8.32+0.108X, +0.063X, , +0.022X,_, —0.020X,
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- Aswehave shown in the above model that second regression as the ‘best’
. one because last two equation the sign of X, are changable and in the last
one, X,_, was negative, which may be difficult to interpret economically.
Although the procedure is stratght forward, it has the following drawbacks-
1) There are no a priori guide as to what is the maximum length of the -
; b :

2) Due to successive lags, there are fewer degrees of freedom left. It
makes statistical inference somewhat shaky. Because the economist
&emtiuckytohavelongsmesdaiasothattheycmgoonesamhng '
numerous lags.

3) More importantly, in economic time series data, successive value
(lags) tend to be highly correlated i,e there are presence of
multicoflinearity.

Itlcadsthestandarderrortendtobe large in relation to the estimated
coefficients. As result the '’ value decreases and lagged coefficient
becomes statintically insignificant.

4) - The sequential search for the lag length opens the researcher to the
charge of data-mining. Here both nominal and true level of significance
are used to test statistical hypothes;s and it becomes an important
issue of sequential research.

34.2 Koyck Model

Koyck has proposed an ingenious mcthod of esl:lmatlng distributed -lag
models. Suppose ws start the infinite lage model 9.1. Assuming that the
B'sareall ofthesamcszgn.Koyckasmm that they declines geometrically
asfollows-

=BA k=m0l i ©9.2) -

Where 3,, suchthat 0<),<1 is known as the rate of decline ordecay ofthe
. distributed lag model and where 1-), known as the speed of adjustment.
- What 9.2 postulates is that each successive f coefficient is numerically less
than each proceeding P (this statement since ), <1), implying thatasone
go back into the distant past, the effect of the lag on Y%, become
progressively smaller, a quite plausible assumption. Koyek scheme is

depticted in Flg-

ﬂ'u.

(&)

Koyck Scheme (declining geometric distribution)
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Features of Keyck scheme : (1) by assuming nonnegative values for 3,
Koyek rules out the B's from changing sign (2) by assuming ), <1; he gives
lesser weight to the distant §§ 's than the current ones and (3} he ensure that
the sum of the 3 's, which gives the long run multiplier, is finit namely,

éﬁk =ﬁo(-1_l—k] e (93)
- Asaresultof(9.2), the infinite lag model (9.1) may be written as - |
Y =0 ByX, A BAR oy +BoA K e F Uy e (94)
But now Koyek suggests an ingeneous wayom He Iags {9.4) by one period-

Y, =0+ByX, +BAK L FBA K g Froer Uy e 9.5)
Thenhe mulnphes (9.5)by }, to obtain -

AY, =20+ ABX  + BoA’X p +BoA'K oy e H A viens (9.6)
Substractmg 9.6 from 9. 4 we gets— ;

Y, -AY, =ald-A)+Bx, +(u, -Au_) ... 0.
or rearranging - o -

Y, = o1y +Box, +AY,  +V, ' e (9.8)

where v, =(u, —Au,_,),amoving average of u and u,_,

This procedure is known as Koyek transformation. Before that we had to
estimate ¢ and infinite number of B's. But now we have to estimate only
three unknowns, of,p, and 3 . :

Features :
1) We started with distributed-lag model but ended up with an
autoregressive model because Y, | appear as one of the explanatory
~ variables.
2) The presence of Y, , is likely to create some statistical problems
Y, and Y, is stochastic, which means we have a stochastic
_ explanatory variable in the model.
3) In the original model we have disturbance term u, but in the

transformation model, the disturbance termis v, = (u, —Au,_,). The
latter shows there are serial correlation in addition with stochastic
explanatory variable Y .

4) The presence of lagged Y violates one of the assumption underlying
Durbin-Watson d test. Therefore, we will have to develop an
alternative to test for serial correlation in the presence of lagged Y.
It is Durbin-h test.

The Median Lag :
The median lag is the time required for the first half or 50 percent, of the .
total change in Y following a unit sustained change in X.
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Koyck Model : Median lag =_‘_°8_i
log

Thusif A =0.2,the median lagis 0.4306

The Mean Lag : _
Provided all B, are positive, the mean, or average, lag is defined as—
STkB, |
Mean lag= z“ﬁx
Whlch is simply the weighted average of all the lags invioved, w1th the
respectlve i coefficients serving as weights.

~ Koyck Model : Mean lag =ﬁ
Thus if A= themean lagis 1.

3.43 Partial Adjustment Model '
The adaptive expectation model is one way of rationalizing the Koyek Model.
More Nerlove presided Stock adjustment or Partial adjustment model
(PAM). To illustrate the model; consider the flexible accelator model of
economic theory. It assumes that there is an equalibrium, optional, desired,
or long run amount of capital stock needed to produce a gievn output under
the given state of technology and rate of interest etc. For simplicity assume

that this desired state of capital Y, is alinear function of output X as follows—

Y, =By +Bx, tu, e (10.1)

Since disered stock of cépital is not directly observable, Nerlove postulate
the following hypothesis known as partial adj ustment, orstock adjustment
hypothesis '

Y, -Y,, =8(y; YH) s 102 -
Where § such that 0§71 known as the coefficient of adjustment and

where Y-Y = actual change and (Y;~Y, ,)- desired change.
Since, Y Y ihe change in capital stock between two periods, is nothing

-3

but investment, 10.2 can be writen as—
I=§(Y-Y_) .......(10.3) when It= Investment in time

period t
Equation 10.2 state that the actual changc of capital stock in any given time

period 't' is some fraction § of the desired change for the period.

If § =1 meanse that actual stock of capital is equal to the desired stock.
If §=0 it means that nothing changes since actual stock at time 't' is the
same as that observed in the previous time period. |
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The formula - (10.2) can be written as—
Y, =8Y, +(1-9)Y,, _
Now substitution (1 0.1) into (10.4) we dstain-
Y =8(8,48,X, + u.r)'l' (I_S)YH
= §B0 +5ﬁ1 Xt + (l 3 6)Y1~1 3 6"lt '
The model is called the parfial adjustment model (PAM).
Since (10.1) represent long run, or equlibrium, demand for capital stock,
10.5 can be called short run capital stock since in the short run the existing
capital stock may not necessarity be equal to its long run level.

Combination of Adaptive Exp.ecta'tious and Partial Adjustment
Models : . :
Consider the following model -
Y:=30+Bix:+ut s g
Y, = desired capital stock and X; = expected level of output.
Since both Y, and X, are not directly observable, . One could use the
partial adj_usmem mechanism for Y, and the adaptive expectation model
for X; to arrive at the following est:matmgequatwn |
Y, =Bedy+B X, +[(1-1)+ A-H)IY,, (1~ 5)(1 —1)Y,.2+[80, -5(1 ?)HH]
=0, +0,X, +0€.2XH +0,Y,_, +v,
Where v, = 8[u, — (1-y)u,_,] This model too is autoregressive, theonly'

difference from the purely adaptive expectationmodel being that Y, , appears
alongwith Y, | as an explanatory variable. Like Koyck and the AE models,
the errors term follows a moving average process. Another feature of the
model is that although the model is linear in the ¢t's, it is nonlinear in original

parameter.

3.5 Estimation of Autoregressive Model
From our discussion this far we have the following three models -
Koyck- -

Y, = o1 -A) +BoX, + nt,, +(u, -M)  e(11.1)
Adaptive Expectation— F

Y, =10, +vB, X, +(1- 'Y}Y - +[u -(1-u ] .....(11.2) _
Partial adjustment—

Y, =8B, +8B X, +a )Y, , +5u, wnd(11.3)
All these models have followingcommon form—

Y, =0t X, +0,Y Y, e (11.4)

that is they ar¢ all autoregresmve in nature.
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Here we can not use least square methods of estimation, the reasons are
two fold—The presence of stochastic explanatory variables and the possibility
of serial carrelation. Even if stochastic, for the application of classical leat
square theory, the stochastic explanatory variable Y,  must be distributed
independently of the distrubance term v, . To determined it, we have to
~ knowthe properities of v, . Suppose the original distrubance term u, satisfies
assumptions of homoscedastcicity, no autocorrelation, unbiasedness etc.
But v, may not be so. Koyck model's error term, we can show it is serially
correlated- ;
E(v,v, ) =-Ac” i wis{115)

‘Whichis nonzero (unless ), happens to be zero). And since Y,_, appears in
the Koyck model as an explantory variable, it is bound to be correlated
with v, . Asa matter of fact, it can ve shown,

covly . (u, —Au,_)l=-A8% . wn{11.6) _
In Koyck model as well ab in the adaptative expectations model the
stochastic explanatory variable Y, is correlated with the error term v, (?)
As noted previously, If an explanatory variable in a regression model is
correlated with the stochastic distrubance term, the OLS estimators are not -
only biased but also not even consistent, that is even if the sample size is
increased indefinitely, the estimators do not approximate their true population
values. Therefore, estimation of Koyck and adaptive expectation models
by the usual OLS procedure may yeild seriously misleading results.

3.6  TheModel of Instrumental Variable (IV)
We cannot apply OLS to obtain consistent estimator when Y, is correlated

with disturbance term v, . But if this correlation is removed OLS can be

applied. To accomplish this, Liviatan has proposed following solutions Let
us suppose that we find a proxy for Y, | that is highly correlated with Y, ,

~ butis uncorrelated with v,, where v, is the error term appearing in the
Koyek or adaptive expectation model. Such a proxy is called an instrumental

variable (IV), Liviatan suggest X | as the instrumental variable for Y, and
further suggests that the parameters of the regression (11.4) can be obtained
IY, =no. + @, ZX, +a,2Y,
CEY.X, =0, EX, + o, EX? +0,EY, X, L_(A)

Y X, =a, 52X, +a,EX X, +6, Y, X,

Notice if we were to apply OLS directly to (11.4), the usual OLS normal
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equation would be-

SY, =no,+ 0, EX, +0,2Y,

IY,x, =0.ZX, + 0, ZX?+0,2Y, X, (-(B)

C2Y,Y,, =0.2Y,_ +e3x, Y, +0,2Y7

The difference between the two sets of normal equations should reading be
apparent. Liviatan has shown that the ¢ estimated from (A) are consistent
whereas those estimated from (B) may not be corisistent because Y, , and
v[=u, -u,_ oru, -(1-y)u,,] may be correlated whereas X and X,

 are correlated with v, although easy to apply in practice once a suitable
proxy is found, Liviatan approach is likely to suffer from the multicolinerity
problem because X and X, , which enter the normal equation in (A) are
likely to be highly correlated. The implication then is that although the Liviatan
~ procedure yields consistent estimates, the estimators are likely to be
_Asthefinding of a good proxy always is not an easy task, so one may have
10 resort to maximum likelihood techniques, which are beyond the scope of
thebook. - - '

3.7  Detecting Autocorrelation in Auto-Regressive Model
The serial correlation in error term v, make estimation problem more

complex. In the stock adjustment model the error term v, did niot (first

order) have serial correlation if the errom term u, in the original model was
serially uncorrelated, whereas in the Koyck and adaptive expectation model
v, was serially correlated even if "u" was serially independent.

So the main question is how does one know if there is serial correlation in
the error term appearing in the autoregressive model?

Durbin himself has proposed as large sample test of first order serial -
correlation in auto regressive models. This test is called the 'h statistic'.

y statistic- _

D SR o
1”9[@1(&2)] : (13)

Where n is the sampel size, Var ((;2) is the variance of the coeffecient of

thé lagged 'Y;= (Y_)and 5 isanestimateof the first order serial correlation
p. | |
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For large sample, Durbin has shown that; if p=0, the h statistic of (13)
follows the standard normal distribution. That is
ha syN (0,1) s (13:1)
asy-means asymptotically
In practice one can estimate P as

o~ d
=]—
P 2

Itis interesting to observe that although we cannot use the ‘Durbin d' to test
for autocorrelation in autoregressive models we can use it as an input in
compuling the h statistic.

Important Features ol‘ 'h' Statistic : '

1. Itdoes notmatter how many X variable or how many lagged values
of Y are included in the regression model. To compute h, we need to-
consider only the variance of the coefficient of lagged Y, .

2. The test is not applicable if [nVard, ] exceeds 1. In practice it
usually dest not happen. '

3. Sincethetestis a large sample test, its application in small samples is
not strictly justified, as shown by Inder and Kiviet. Ithas been suggested
that the Breusch-Godtrey (BG) test, also known as the lagrange
multiplier test, is statistically more powerfull not only in large sample
butalso in finite or small, samples and is therefore preferable to theh
test. _ -

Let us illustrate the use of the h statintic's with our example where n=30, -

4. _
p=( -~2-} =0.4972 and var (&,) =0.0239. Putting these values inequation
13, we get—

h=04972 |32 __ —51191
1-30(0.0239)

Since the 'h' value has the standard normal dlstnbutmn under the null
hypothesis, the probability of obtaining such a high value is very small. Recal
that probability that a standard normal variable exceedsthe valueof +3 is
extremly small. In the present context there is (positive) autocorrelation. Of
course bear in the mind that h follows standard normals distribution

asymptotically.

38  SummingUp

In this unit, we have discussed about distributive by models, which include
Reasons for Logs, Estimations of Distributive Lag Model etc. The unit gives
a precise analysis Koyek approach to Distributive Lag model where we
start with a distributive-lag model but eventually end with an autoregressive
model, Another model discussed in this unit is Partial Adjustment Model.

55




After that we have discussed about I,iviatara;s method of Instnmentzl Vari~
ables and Durbin’s “h” test of Detecting Autocorrelation in Autoregressive

3.9  Self Assessment Questions
1. Discuss the concept of Distributive Lag Model with the help of a
suitable example.

2. Discuss the Koyek approach to Distributive Lag Model.
3. Whatare the important features of Durbin’s “h” statistic?

3.10 - References/Suggested Readings
1. Johnston, J., “Econometric Methods”, McGraw Hill.
2. Gujarathi. D., “Basic Econometrics”, McGraw Hill.
3. Pindyck and Rubinfeld, “Econometric Models and Econometric
Forecasts”, McGraw Hill. _
4, Greene, William, “Econometric Analysis”, Macmillan.,
5. Johaston and Dinardo, “Econometric Methods™”, McGraw Hill.
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Unti-4
ANALYSIS OF TIME SERIES

Contents:
4.0 Introduction
4.1 Objectives
4.2 Statistic Process
42.1 Stationary Stochastic Process
4.3 Non Stationary Time Series
4.3.1 Non-Stationary Stochastic Process
4.3.2 Unit Root Stochastic Process
4.4 Trend Stationary and Difference Stationary Stochastic Process
4.4.1 Pure Random Walk
4.4.2 Random Walk with Drift
4.4.3 Deterministic Trend ' _
4.44 Random Walk with Drift and Deterministic Trend
4.4.5 Deterministic Trend with StatlonaryAR(l) Components
4.5 Testof Stationarity -
4.5.1 ACF and Correlogram
4.5.2 TheAugmented Dickey Fuller Test
4.6 SummingUp
4,7 SelfAssessinentQuestions
4.8 References/Suggested Readings

_ 4.0 Intmduchon

We have that there are three types of data in Economics, viz. Time Senes,
Cross Sectional and Pooled. One of the important kind is Time Series data.
In time series data we study the behaviour of one or two-variables in different
time pem)ds

4.1 Ohjectwes

e introducing the ooncept of stationary stochastic process and non-
_stationary stochastic process differentiating between trend stationary
and difference stationary stochastic process; and -

@ finding the various ways to test stationarity of a given time series.
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4.2  Stochastic Processes

A random or stochastic process is a collection of random variables orderd
intime. If we assume Y denote a random variable, andlfztlsooumnms we
denote 1t as Y(t) but if it is discrete, we denote it as Y,

4.2.1 Stationary Stochastic Processes _

A stochastic process is said to be stationary if its mean and variance are
constant over time and the value of the covariance between the two periods
depend only on the distance or gap or lag between the two time periods
and not the actual time at which the covariance is computed. In the time
series, such a stochastic process is called weakly stationary, or covariance
stationary, or second order stationary, or in wide sense, stochastic process.

To explain weak stationary, Let Y, be a stochasuc time series with these
properities-

- Mean E(Y,)=p 23101
Variance  Var(Y,)=E(Y,-pf=0®  ...23.12
Co-variance  y,=E[(Y, ~pXY,,—1)] = ... 23.1.3

. Where y, , the covariance at lag k, is the co-variance between the values

of Y,and Y, , thatis two Y values K periods apart. If k=o, we obtain y_,
which is simply the variance of Y=(¢?), if k=], ¥, is the covariance
between two adjacent values of Y .

In short, if a time series is stationary, ﬂmnmn,vanmamiautooovanances
(at various lag) remain the same no matter at what point we measure ttiem.
’Ihatistheyaretimeinvariam.Suchﬁmeﬂsmmdﬂtendtorcuuntdmmn.

43 Non Statumary Time Series

If a time series is not stationary in the sense just defined, it is ca!ied a
nonstationary time series. In other words non-stationary time series will
have a time varying mean or a time varying variance or both.

Stationary time series are so impartant, because if a time series is
nonstationary, we can study its behaviour only for the time period under
consideration. Each set of time series data will therefore be for a particular
episode. :
Before we move on, we mention a special type of stochastic process (time
series) namely a purely random or white noise, process, as it has mmean,
constant variance ¢, and is serially uncorrelated.

4.3.1 Non-stationary Stochastic Process
In case of non-stationary time series, one often encounters the classic
example being the random walk model (RWM). Examples are, asset prices,
such as stock exchange rates. We distinguish two types of random walks
(1) random walk without drift (no constant or interupt term) (2) random
walk with drift (i,e a constant term is present).
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(1) Random Walk Without Drift :

Supposeqrs a white noise error term with mean 0 and variance ¢°. Th(:n
the series Y, is said to be a random walk model if.

Y =Y, +u, ' ..23.1.4
Random walk model (as 23.1.4) shows, the value of Y attime 't isequal to
its value at time (t—1) plus a random shock, thusitisan AR model.
Now from 23.1.4 we can write
Y =Y +u,
Y,=Y +u,=Y +u +u,
Y.=Y,+u,=Y +u +u,+u, ‘

" Ingeneral, if the process started at some time 0 with a value of Y, wehave.

Y=Y 4%, 0 e 23.1.5
Therefore-E(Y, )= E(Y +ZU,)=Y, ... 23.1.6
-~ Var(Y) =to® G I B

Here mean of Y is equal to the 1mtlal value which is constant. But as't
increases its variance increases indefinitely, thus violating a conditionof

(2) Random Walk With Drift :
Let modify (23.1.4) as follows- :
Y, =8+Y,_ +u, ' 2318
Whereis § known as drift parameter. Then- ' _
Y, -Y,_ =AY, =8+u, .. 23.1.9
itshowthat Y, ,dnﬁ: upward or downward, depending on § being
positive or negative.
It can be shown- _
E(Y,)=Y,+t3 ‘ 23.1.10
Var (Y)=tc> _ ...:.23.1.11

It shows that random waﬂ_c with drift model are non stationary.

4.3.2 Unit Root Stochastic Process
Let us write random walk model-23.1.4 as
Y,=pY,  t+u,

Thjs model is known as the Markov first order autoregresswe model. If
p=1, we face what is know as unit root problem. Thus, the term
nonstationary, random walk, and unit root can be treated as synonymous.
Ithowever, |0|<1, that s if the absolute value of p isless than one, thenit

" can be shown that the time series, Y is stationary.
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4.4 Trend Statinary (TS) and difference Stationary Stochastic Process
Broaldy speaking, if the trend in a time series is completely predictable and
notvariable, we call it a deterministic trend, whereas if it is not predictable,
we call it a stochastic trend. To make this defination more normal let us
consider following series -
Y, =B, +B,t+B,Y, +ut .23.1.12

Where u! is a white hoise error term and wheme t (time) is measured
choronolaglcaily Now we have the foﬂowmg possmllmes

44.1 Pare Random Walk
Ifin21.2.12 B,=0, B,=0, B;=1, we get

_ . Y =Y_ +u, wirddi k13
Ifis RWM without drift and it is therefore nonstationary. But if we write-
AY, =Y, -Y_)=u, ... 23.1.14

became stationary, which we can call difference stationary because_
Ay, i the first difference of Y, as noted before.

4.4.2 R'alldom'Wa]k With Drift
Ifin23.1.12 B,#0,8,=0&P;=1 we get

Y, =B,+Y,_, +u, w3115 _
Whmhlsarandomwaﬂcdnﬁand&mefmemnstanonmy lfwewnteﬁas—
(Y. -Y_)=AY, =B +u, ... 24.1

This meansthﬂl exhibit a positive ( B,>0) or negative ( B, <0) trend. Such
a trend is called a stochastic trend. Equation 23.1.14 is DSP process
becauseﬂmnonstatxonmtme canbeehnumtedbytakmgﬁ:stdlﬂ'amae
of the time series.

FlngfRandomwaIkmodelmthoutdnﬁ

Asthis world variance depend on time t. Thus, where o = Qand §, i,cAR
proses=Y, = a+pY,, +u,. The time series will sealter more and more as it
increases around the same mean (Y ). Shown in the diagram below daigram-—

Y,

L]

oY,

o

4
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Figure for Random walk model with drift :
Figl: a<0f=1 Fig2: o>0p8=1

UR (Y

T s

v

4 5 -
E(Y/Y)

Figure For Determinstic versus stochastic trend.
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443 Determinstic Trend ,
Ifin (23.1.12), B,#0,B, # 0, B,=0 then we, get- -

Y, =B +B,t+u;, - ... 24.2
which s called a trend stationary process (TSP). Although the meanof Y, is
B, +P5 » which is not constant, if varience = (o°) is constant. Once the
valueofﬂ,aﬁd Bzmkﬁcwn,thenmcmbefomastperfecﬂyfhﬂefore
if we subtract the mean of Y, form Y,, the result will be stationary. Hence,

- the name trend stationary. ‘I'he pmcedum of removing the (detennmsnc)
trend called detrending.

~ 444 Random Walk With Drift and Determinstic Trend
Ifin C23.1.12, B=0,8, #O,ﬁ, =1, we obtain

Y= ﬁl-l-ﬂzt-i- AT T ) S 243
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Wehave oanedamzﬁomwaikmﬁ'l drift and adetemzwsuc trend, which
can be seen if we write this equations as—

AY, =B, +B,t+u, s 244
which means that Y, is nonstationary.

445 Determinstic Trend With Stationary AR (1) Components .
Ifon (23.1.12), B, #0,B, #0, B,# 0 then we, get-

Y, =B, 4B, t+B, Y, +u, ... 24.5
Which is stationary around the determinstic trend.

4.5  Testof Statmnary
With the above elaboration probably the reader has gota good idea about
the nature of stationary stochastic process and theiri meoﬁance In practwe
. we face two important problems.
1) Howdowefindoutthata given series is stahonaxy‘? :
2) [Ifwefind out thata given time series is non-stationary, is there a
way that it can be made stationary? -

The second questions answer given by following the various method latter.
But the first questions answer follows the following test-

4.5.1 Autocomlahon Function (ACF) and Correlogram
One simple test of stationarity is based on the so-calied autocorrelation

function (ACF). The ACF atlagk, denoted by Py - isdefinedas .

9, cov arianceof lagk

Px rore e 251
0 variance

Since, covariance at lag k and variance are as defined before.
As both variance and co-variance are measured in terms of same units of

measurement, p, is aunitless, or pure, number. It lies between -1 and 31,

asany correlations coefficients does. If' we plot p k‘ against, k; the graph we

obtain is know population correlogram
Fig of Corrolegram :-

i,e we plot p, againstk. _

Py

\ f<0<p<l |.e where
: Y =a+BY, +u,
muﬁ '
‘-._‘_““ v i
1 """"-—-.M
] ¥ 3
o = : K

62




If —1<B<0 then,

. G e NG L e K g
0 \/7\/ V\/'g' "

Since in practice we only have a sample of a stochastic pmcess, we can
only compute the sample autocorrelation function (SAFC) 0, . Tocompute -

this we must first compute the sample covariance at lagk, y and the

- sample variance 5, which is defined as-

2{ Y, —?{]{YM —if] |
f. = ' e 25.2
k

Where 'n' sample size and y is the sample mean. Therefore, the
autocorrelation functionat lagk is ’

A

Py ="Y: 254

Y : : .
Which is simply the ratio of sample covariance, (at lagk) to sample

variance. A plot of F;k again k is known as the sample correlogram.

Statistical significance of Autocorrelation coefficients :
The statistical significance of any F;\x can be judged by its standard error.
Bartlett has shown that if a time series is purely random, i,e it exhibits white
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noise, the sample autocorrelation coefficient 5;_ are approximathy-

P, ~NO.Y/n) = w261

That is, in large sample the sample autocorrelation coefficients are nonnally
distributed with zero mean and variances equal to one over the sample size.

Now let us turn to the estimation. This is simple enough, All we have todo
is to take the first differences of Y, and regress them one Y, , and see if the
estimated slope coefficient in this regression (§ ) is zero ormt. Kitis zero,
we conclude that Y, is nonstationary. But if it is negative, we conclude that
Y, is stationary. Under the null hypothesis that §=0 (i,e p=1), the 't' value
of the estimated coefficient of Y, | doeés not follow the't' distribution even
inlarge samples, that is it does not haveasymptotic normal distribution.

Altematively Dickey and Fuller have shown that under the null hypothesis
- that §=0, the estimated 't' value of the coefficient of Y, |, follows the (5 )(tau)
statistics. These authors have computed the critcal valucs of the tau statistic
on the basis of Monte-Carlo simulations, In literature the tau statistic known
asthe Dickey-Fuller (DF) test; in honor of its discoveries. Interesting, if the
hypothesis that §=0 is rejected (i,e the time series is stahonary), we can
use the usual (student) t test. _

To allow for various possibilities, the DF testis esumated in three dlﬁ’cwnt
forms, i,e under the three null hypothesis-

Y,is arandom walk AY, =8Y, ,+u, = ... 26.2

Y, is arandom walk with drift AY, =B, +8Y,_, +u, ... 26.3
Y, isarandom walk with AY, =B, +,t+8Y,, +u, wee26.4
drift around a stochastic trend : '

Where tis the time or trend variable. Ineachcasc,themﬂlhypoﬂ:msmmaz

§ = 0, i,e there is a unit root- the time series is stationary. If the null hypothesis
~ isrejected, itmeans Y, is a stationary time arises with zero mean in case of
~ (26.2), that Y, is stationary with a non zero mean [B,/1—P] in case of
26.3 and Yt is statinary around a determinstic trend in 26.4.

It is extremly important to note that the critical values of the tau test to test
the hypothesis that § =, are different for each of the precedmg three
specxﬁcahons of the DF test.

4.5.2 The Augmented Dickey-Fuller Test

In the model (26.2) (26.3) and (26.4) it was assumed that the error term u,
was uncorrelated. But in case the u are correlated, Dickey-Fuller have
: developed atest, knownas augmentcd Dickey Fuller (ADF) test. The test
is conducted by "augmenting" the preceeding three equations by adding the
lagged values of dependent variable Ay,
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The ADF test here consists of estimating the following regression :-

AY, =B, +f, +8Y,, + iai AYt;i +& "'*26;-5
Where ¢, is a pure white noise error term and where
AY, = (Yt—l_Yl-l)’ dY:—2= (Y:mz;Yt-s‘) ete. -

The number of lagged difference terms to include is often determined
empirically. The idea is to include enough terms so that the error term in
26.5 is serially uncorrelated. In ADF we still test whether § =0 and the
ADF test follows the same asymptotic distribution as the DF statistic, so
the critical values can be used. '

Testing the significane of more than one coefficient : The F Test :
Suppose we estimate a model and test the hypothesis f3, =B,=0, icthe
‘model is RWM without drift and trend. To test this join hypothesis we used
- Ftestas disr_:ussed earlier.

4.6  SummingUp _

In this unit we got a basic idea of Time Series Econometrics. Concepts of
Stationary Stochastic Process and Non-Stationary Stochastic process are
discussed. In case of stationary process we will have time invariant mean,
variancé and covariance but in case of non-stationary series we will have a
time varying mean or a time varying variance or both. After that we have
discussed different types of non-stationary series, Autocorrelation function
and a brief concept of Augmented Dickey-Fuller Test.

4.7  Self Assessment Questions
" 1. Whatis the difference between Stationary Time Series and Non-
Stationary Time Series? _
2. Discuss the two types of classic Random Walk Model of non-
stationary time series. '
3. How can we find out whether a given time series is stationary or
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5.0 Introduction _ N -

There are situations where there is a two-wag-flow of influence among
" economic variable's i,¢ one economic variable (s), affects another economin

variable (s) and in turn, is affected by it (them). And this leads us to consider-

simulteneous -equation models, model in which there is more than one

regression equation, one for each independent variable.

51  Objectives -
This units mainly aims to illustrate the concep of if simultaneous- equation
model and its economic applications. More specifically it seeks to deal
with- :
® Various concepts related to simultaneous equation model;
e Finding the estimatators of the simultaneous equation model; and
® Problem related to identification of the simultaneous equation model,

52  Meaning and Structure of Simultaneous Equation Models

In many situations, the cause and effect relationship are not meaningful.
This occurs if Y is determined by the X's and some of the X's are in turn,
determined by Y. In short there are two way or on simultaneous relationship
between Y's and X's, which makes the distinction between dependent on

independent (explaratory) variable.
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| Ex —The demand and supply function.
or Y, =B B, Yy HYXy 8y e (14.1)
Yo, =B + By Yy + YKy +0y s (15.2)
Here Y, and Y, are mutually dependent or endogenous variables, X,is
and exogeneous variable and u, &u, are the stochastic distrubance term, -

3.3  Simultaneity Bias
Aswe stated previously, the method of least squam may not be applied to
the simultaneous equation model, if one or more explanatory variables are
correlated with the disturbance term in that equation. Becazseﬂmwﬁmators
thus obtained are inconsistent.
Ex :- Consider simple Keynsian model of income determination.
Consumption function: C, =B, +B,Y, +u, 0<p, <1 (14.1)
Income identity: Y, =C, +I,(=S,) ' .(142)
C=Consumption, Y=income, I=Investment, S=Savings, t=time, u=stochastic
distrubance term. B, and B, are parameters.
Assumingthat E(u,)=0,E(u})=¢?, E(u,u,;)=0

i # 0and cov (Ju)=01,e. assumption of CLRM.
To prove that Y, and u, are correlated, we proceed as follows. substitute-
(14.1)in (14.2) to obtain—

Yl =ﬁ0 +ﬁlYI +ut +It

| B, . 1 1
g YL =, + II t U: ....... . i
Now  %=1-p,"1-p, * ' T-p, (15.1)
Now E(Y, )--—-2—- +—- ....... 15.2
_BI _61 '
Where use is made of the fact that E(u)=0 and | _exegencous or
predetermined, has as its expected value I.
Now, subsimcung 15.2 from 15. l we get-
........ 153
—B; 33
Moreover-u-E (u) =1, s 154

Where cov (Y,,u,) = E[Y, - E(Y) Ju, -E(u,)]
_ E|uf )
1-6;
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. Since ¢ is positive by assumption, the covariance between Y and u, gi';'m
in(15.5) is bound to be different from zero. As aresult Y and u in 14.1 are
expected to correlated which violates assumption of CLRM and where
estimators are inconsistent.

To show that the OLS estimators f, is an inconsistent estimator of B, —
ﬁ1 T(Ct—-T)(Y,~Y)
XY, -YY
_Z PLHA
zy?

_ZCy,
| Xy:
~ _Substitation for c, from 14.1 we obtain

_ 2B+ Y +u)y,
.ﬁl EY? | s 15,7

Z(y.u,)

2y,

where Xy, =0and (X Y,y,/Xy))=1)

If we take the expectation of (15.7) of both sides, we obtain-

E{ﬁ] =Bl+5[%%] R 15.8

ﬁnfom%ﬂy we cannot evaluate E(S yu, | Sy?), since the expectations
‘operator is a linear operator. '
But if the sample size increases indefinitely then we can resortto the concept

veneer 15,6

:Bl"'

of consistent estimators and find out and what happento ﬁl as the sample -

size increase ux:leﬁmty
~ Now an estimator is said to be consistent if its probability limit or plim for
short, is equal to its true value (population value).

~ Applying the rules of probability— -
th(é: ] =PLm(B, }+ th—zéllla))

=Plim(, )+1:-1i /o “]

Zy;/n

th u./n) ' |
-ﬂ; (Ey‘ vi/a R 1 1)
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In 15-9 where in the 2nd step, we have divided Zy,u, and Zy? by the |
total number of observations in the sample size 'n' so that the quantities in
the parentheses are now the sample covariances between 'Y’ and "U'and
the sample variance of Y, respectively.

In other words, (15.9) state that the probability limit of § is equal to the

true f, plusthe ratio of the plim of the sample co_-vatiame'betwéen Yand
u to the plim of the sample variance Y. If the sample size 'n' increase
indefinitely, one would expect the sample covariance between Yand u to

-approximate the true population covariance. E[ Y -E(Y))] {U -E(U))] which
isequal to [ */1-B, )]. Similar is the case for sample variance.

So, le{Bl)zﬁl s (IY&

-'“‘*’*E[E] : e (15.10)

Given that 0<f, <1 and * and & bothpositive, plim (3, ) always greater
than 3, i.e. B, isabiased estimator. '

5.4  Identification Problem: Introduction

To introduce our discussion, the following notation and definition. The
general M equation model in M enogenous, on jointly dependent variable
may be written as-

Y, =B Y, + By Yo, ot B Yo +¥1 K + ¥ X ot Vi Xy,

Y, =B Y, e B Y, e B Yaw HY2 K F V0K F ot Vi XK U,

Y, =By Y, +Biy Yo, # et By Vi + V3K +Y5:Kot FooreH YK + 05 .16.11
. Yo =B i + B Yoo + oot Brned Yuase X + a2 X + oot YanXio + i

where Y Y, Y, =M endogeneous or jointly dependent variable.

XKoo Xk-K predetertmnd variable (one of these X variables may take _

avalue of unity to allow for the intercept term in each equation).

u,,W,...u,,=M stochastic distrubances. :
“t=1,2....T=Total numbers of observations.

B 's= Coefficicats of the endogoneous variables
'}’ 's= coeffictents of the predetermined variables.

Two types of variable :-
(1) Endogeneous, that is, those (whose value are) determined within
the model. They are regarded as stochastic. :
(2) Predetermined, that is those (whose values are) determined outside
the model. This variables are regarded as non-stochastics.
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Again pre-determined variables are divided into two catagories-
~ exogeneous, (current as well as Jagged) and lagged endogeneous.

X, - current exogeneous

Xm - lagged exogeneous variables.

_ Y 3 - lagged endogeneous variables.
The equation like (16.11) known as structural, or behavloural equation

because they may portray the structure (of an economic model) of an

economy or the behaviour of an economic agents (consumerfpmducers)

B’'sand y’s structural paramenters or coefficient.

A reduce form equation is one that expresses an endogeneous vanable
solely in tefms of the predetermined variables and the stochastic distrubances.

Example :-
Consmnphon function :- _
C, =B, +B,Y,+U, 0£B, 4 - . 19.2
Income Identiy- _
Y. =0 4], ' 193
Now 19213 substitude to 19.3 and we obtam—
Y =n+mi+w, . o194
Where 7T 5 — .19.5
1= Bi
n,= L :
I 1- B i
_ U,
Wi = _
d1-B,

19.4 is the reduced form equation. mt, and 1, reduced form coefficients.

Note the Interesting Features

since only the pre-determined variables and stochastic distrubances appear
- on the right sides of these equations, and since the predetermined variables
are assumed to be the uncorrelated with the distrubances terms the OLS
method can be applied to estimate the coefficients of the reduced- form
_equations. From the estimated reduced form cogfficients one may estimate

the structural coefficients {the B’s ). This procedure is known as indirect
least squares (ILS), and the estlmated structural coefficients are called ILS
estimates.

By identification problems we mean whether numerical estimates of the
parameters of a structural equation can be obtained from the estimated
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reduced form coefficients. Ifit can be done, then we say that equation is-
- identified. If this cannot be done, then we say that the equatlon under
consideration is umdenuﬁed, or mder identified.

o

5.4.1 Under identifiaction : Demand and Supply Model
Demand finction Qf =a.,+a,P, +u,,  O4<o0 v 19.6
Supply function Q¢ =B_+B,P, +uy, B0 . . 19.7
Equlibrium quation: Q¢ =Q* '
By equlibrium we obtain o, +0, P, +u, =B, +B, P, +u,, ...19.8
Showing (19.8) we obtain the equlibrium price- -

P, =RV, -
Where 71, = Bo, 20.1
o,—p, E
Ty Ug
i ac 20.2
al"'ﬁt
Now substltutmg Pt from (19.9) into (19.6) we obtain the following
Q =m+w, | v 20.3
‘Where, z,= 21B0=%oBy 204
a,~B, _
out—3,ut
W .= 12 | B | .
S 20.5

The error terms v, and w, are linear. Combinations of the original error
terms u, and u,. From the reduced for equation there are four structural
~ coefficient &, &, B, and B, but there is no unique way of estimating them
because there are only two reduced form equations. For exactly identified
equations if there are K unknowns then we must have K (independent)
equations.
54.2 JustorExact Idenhﬁcatmn

Demand function : Q, = o +a,P, + 0,1, +u,, o, <0,a, >0 - .206

Supply function: Q, =B, +B,P, +u, B>0 ... 20.7

Where I= Income of the consumer, an exogeneous variable, and all other
variables are as defined previously with respect to the former model. Here
we include one additional variable in the demand function namely, income.
Using the market clearing mechanism, quantity demanded = Quantity
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supplied, we have
o +o, P +o, 1, +U, =B, +B, P, +U,, e 20,8
Solving the equation 20.8 provides the following equlibrium value of P,
P, =m,+m, 1, +v, ' —I1E
Where reduced form coefficient are

-------

Now substituting the equlibrium value of P, into the preceding demand or
supply function, we obtain the following equlibrium quantity—

.Q! =+ +w, |

- Oy ﬁo —0y Bl |
&y '_Bl
L1
o-f 212
- 0['IU 21“61{1 1t
Gy —ﬁl
Since 20.9 and 21.1 are both reduced form equations, we can use the
- OLS to estimate the parameters. Now in the demand and supply function
there are five structural co-efficients - ct,, 01,0, B, and B, . Butthere are
four equation to estimate them, namely four reduced form co-effiecient

n,

=

Wl

Ty, T, T,and 7T, given in 20.10 and 21.2. Hence unique solution of all
structural coeffecients is not possible. But it is possible that supply function
can be estimated (identified)

Bo=m,— P,

Bi=— | w213

But there is no unique way to identify the demand function, therefore it
remains underidentified. But notice an interesting fact : It is the presence of
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an additional variable in the demand function that enable us to idennfy the
and Supply function.

5.43 Overidentification :
For certain goods and services income as well as wealth of the consumer's
isan impotant determinant of demand.

Demand Function :

: Q,=a,+0,P, +o,I, +o, R, +u,, ... 214
Supp]yﬁnx:ﬂon
| . =Bo+B,P, +B,P,_, +u,, i 18

Where in add:txon to the variable already defined, R represents wealth, for
most goods and services, wealth, like income, is expected to have a positive
effect on consumption.

- Equating demand to supply, we obtain the foilomng equlibrium price and
qQuantity -

P, =nﬁ+ﬁ,i,-+n‘2Rz+n3Pt_l +V, . 21.6
Q =m,+m I +n R, +m,P_ ~14+w, ... 21.7
Where,
i i o
= o=t =
o, =P, a,—f,
o, B,
n,= m=
: o,—B, ! o, B,
o, By 0,3 o = o, B, 1.8
A e i s
a,—B, o o,y
.= o, B, .I )= o, B,
6 -
al, Bl 0:1"'81
5 a,u,~Bu, U, —Uy,
[§ 4
. o,—B, 051""31

The prece'ding demand and supply model contains seven structural
coefficients, but there are eight equations to estimate them- the eight reduced
form coefficients given in (21.8). that is, the number of equations is greater
than the number of unknowns. Therefore, unique estimation of all the
" parameters of our model is not possible. From the reduced for coefficients
we can obtain

or B= % ,ﬂ]ﬁtis,ﬂlremaremnesﬁmatmofdmpricemefﬁcim
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in the supply function, and there is no guarantee that these two values or
solutions will be identical, '

55  Rules of Identification
- There are two condition :
i) The order condition of identifiability.
- 1) The Rank conditionof indetifiability.
M= Number of endogeous variables in the model
m= Number of endogenous variables in a given equation.
K=Number of predetermined variables in the model including the
intercept.

k=Number of predetermined variables in a given equation. -

- §5.1 Order Condition of Identifiability
A necessary (but not sufficient) condition of identification, known as the
order condition, may be stated in two different ways-
Ist: In a model of "M" simulteneous equation in order for an
' equation to be identified, it must exeludes at least M-1 variables
endﬂgmmusasweﬂaspmdeimnﬂd)appeanngmﬂwmod&
If it excludes exactly (M-1) variables, the equation is just
identified. If it excludes more than M-1 variables, if is
overidentified.
2nd rule: hamodel of M simulteneous equation, in ordex foran equallon
to be identified, the number of predetermmed variables
excluded from the equation must not be less than the number
of endogeéneous variables includes in that equation less 1, that
is K-k>m-—1, if K—k=m-1, the equation is just identified, but
ifk-k>m-1 itisoveridentified.

5.5.2 Rank Condition of Identifiability .

The order condition discussed previously is a necessary but not sufficient

condition for identification, that is, even it is it is satisfied, if may happen that

the equation is not identified. We need one sufficient condition for
“identification, Thisis provided by therank condition ofidentification. Which

may be stated as-

Tnamodel containing M equations in M endogencous variables, an equation

is identified if and onlyif at least one nonzero determinant of order (M-1)

(M-1) can be constructed from the coefficients of the variables (both

endogeneous and predetermined) excluded from that particular equation

but included in the other equations of the model.

Anillustration of the rank condition of identification- where the Y variables

are endogneous and the X variables are predetermined.

Yn _Bm *612Y2: "ﬁisYz,: '"'Yllxn =0, ssnndilin]
Y::.“Bm o _ﬁzaYn TY:an _Yzzxzz =U, S 7.
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Yy _ﬁaa‘ﬁ‘n\.tr:. = Y:}LX;; = 'Ygzx 2t = Uy e 21.3

Yo =Bu~BuY, ~BaY;, “Yux:;t =u, R & 21.4
To facilitate identification, let us write the preceding system in following
Table which is self explanatory.
- Table 1 Cofficient of the Variables .
EquationNo| 1 | Y, Y, | Y, Y,| X | X | X
20.1 -Bo | 1 | -By [-Bs 0| -y, 0|0
202 FBu | O | 1 [-By | O [ —yy|-vef O
203 By | B 0 _ 1 0 | ~Yyu|—Y¥n| © _
204 - B |-By | "B O k. AR
Table 2 ' :
[EquationNo{ No.ofPredetermined | No.endogeneous * | Identified
variable excluded K-k | variable included -
less one (m-1)
20.1 2 2 Exactly
20.2 1 1 Exactly
20.3 : 1 1 Exactly -
20.4 ¢ g 2 _ Exactly

Let us first apply the order condition of identification, as shown in Table 2.
" By order condition all equations are identified. Now check with Rank
condition. First equation, which excludes 3 variables, Y,, X, and X.. For
this equation to be identified we must have atleast one nonzero determinant
of order 3x3 from the coefficient of variable excluded from this but inchuded
inother equations. In present case there is only one matrix, call itA

0 -y, O
detA=0 -y, O ¢ 2i-5
(1 0 -y,
{tganbesemthatthedetemﬂn:dofﬁﬁsmwb‘ism;
0 Yz © |
detA={0 -y, 0 |_, 216
10 ¥4 '

' Since the determined is zero, the rank of the matrix 21.5 ,denoted by P(A)
is less than 3. Therefore equation 20. ldocsmtsatxsfythe rank condition
andhencezsnotxdmtlﬁed. :
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Note :- The rank condition teils us whether the equation under considerations
isidentified or not, whereas the order condition tell us fitis exactly identified
oroveridentified. :

To apply the rank condition one may pmcee’ds as follows :

1. Write down the system in a tabular form, as show in above two
table. :

2. Strike out the coefficient of the row in which the equation under
consideration appears. - o

3. Strike out the column's corresponding to those coefficients in 2 which
are none zero. :

4. Theentires left in the table will then gives only the coeffiecients of the -
variables included in the system but not in equation under
consideration; From these entries form all possible matrices like Aof
order M-1 and obtain the corresponding determinants. Ifatleastone -
nonzero determinant can be found the equation in question is (just or
over)identified. ' ' ;

56  Estimation of Just Identified Equation
The Methods of Identical least squares (ILS) :

For ajust or exactly identified equation (structural), the method of
obtaining the estimators of the structural coefficient form OLS estimates of
the reduced form coefficients known as the method of indirect least squares
(ILS). The estimation follows the following step- e _

‘Step 1 : We first obtain reduced form equations, where the endogeneous
variables is a function of predetermined variables (endogenous or lagged
endogencous) and the stochastic error term(S). _

Step 2 : We apply OLS to the reduced form equations individually. Thisis
possible duetostep 1. _

Step 3 : We obtain estimates o fthe original structural coefficient from the
estimated reduced form coefficients obtained in step 2. Asweknow, ifan

- equation is exactly identified, there is a one-to-one correspondence between
the structural and reduced form coefficients.

Example : _
Demand function: Q, =, +0,P, +0, X, +uy,  wn... 20.1
Supply function : Q, =8, +B, P, +u,, o B8
Q= Quantity, P=Price, X=Income o
X=Exogeneous

Reduced from equation :- .
P, =M +m, X, +W, S 20.3
Q, =M+, X +V, voeere 20.4

Where the g’s are the reduced form coefficients and are (nonlinear) -
combinations of the structural coefficients. wand v are lincar combination
of structural distrubance termu, and u,. -
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Reduced form equations contain only one endogeneous variable and which
isa functlons of X' exogeneous variables so we can use OLS '

P ZPx,

Tl 20,5
fty =P, X 20,6
Zq.X :

£, = 29X, .
3 =x2 _ weni20.7
A, =Q-f% ... 20.8

Where Q and P are the sample mean value of Q and P. and fi, arethe
consisten estimators. Now as we determined the supply function itis exactly
identified. Therefore its parameter can be estimated ﬁnm the reduced forrh
coefficients as follows-

2 n '
Bo=m,—B, 7. andp,=—=

T,
Hence. meﬁhmatesofthzsepalametmmanbeobtamedﬁnmthemt:mates
_ ofthe reduced form coefficients as - ' :

Bﬂ =n2 _Ba 0 ' e 20.9

ﬁ . p
3=4 . 20,10

Which are the ILS estmzatarb Note that the parameters of the demand :
functions cannot be estimated. - :

5.7 Estimation of an Over Identified Equation |
The Method of two stage-least Squares (2SLS) :
Income function=Y;, =P, +....+ B, Y, +¥, ,Xu +¥u Xy, + 1, 212

Money supply function: Y,, =8,,+B, Y;, +...... +u,, wtl3
The variable X, and X, are exogeneous. In this type of model 1f we apply
~ OLS then we ubtam moonsxstent estimators, as the Y, and the distrubance
term u, are correlated. In such case we used 2SLS developed by Henri
Theil and Robert Basmann. The methods involve following steps:-
Step1:
To getrid of the likely com:latlon betweenY| and u,, regress first Y, onall
the predetermined variables in the whole system not just that cquatlons In
present case, this means regressing Y, on X, and X, as follows:

Y, =Mty +1 X, 47X, 44, w2l
Where i, are the usual OLS residuals. From equation 21.4 we obtain-

Y, =7, + X, +AX,, 215
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Y, is an estimate of the mean of Y conditional upon the fixed X's.
Sowecanwntesl’l 4as

Y, —Y +l.l ; " ni2lb
Stage 2 : The over identified money supply equation can be written as-

Y, =B +ﬁzx(?u +i,)+u,
=Py + ﬁn_Yu +(u, +6,4,)

=ﬂm + BmYn + ﬁ:

w27

Wheré u} = u,, +pB,,§,
Comparing 21. 3 and 21.7 wesecthatthcyareveryszmﬂarmappearance

the only difference being that 'Y, is in replaced by Yn . The advantage of is

that ¥ ituncorrelated with U; in21.7 asymptotically, that s large sample

as the sample size increase indefinitely. But in original model Y, and U, is

correlated. S _
As this two-stage procedure indicates, the basic idea behind 2SLS is to
'purify’ the stochastic explanatory variableY, of the influence of the

distrubance U,. The goal is accomplished by pelformmg the reduce form

- regression of Y onall the predetermined variables in the system (stagel),

and obtaining the estimates Yu ,and replacing y, inthe original equation

by the estimated Y and applying OLS to the equations thus transformed

(stage 2). The estimator thus obtained are consistent, that is they coverge
- to their true value as the sample size increase indefinitely.

Features of 2SLS : :
. 1. Ttcanbeapplied to an individual equation on the system without
directly taking into account any other equation (s) in the system.

2. Unlike ILS, which provides multiple estimates of parameters in the
overidentified equations, 2SLS provides only one estimate per
parameter.

3. Itiseasyto apply because all one needs to know is the total number
of exogencous or predetermined variables in the system without
knowing any other variable in the system.

4. Although specially designed to handle over identified equations, the
method can also be applied to exactly identified equations. Where
ILS and 2SLS estimates will be identical.

5. Ifyhe R?values in the reduced form regeression are very high, say in
excess 0f 0.8, The classical OLS estimates and 2SLS estimates will
be very close. This result means, that the estimated values of the
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endogeneous variable are very close to their actual values, andhmce
mmmlessﬁke]ytobecorre}atedwiﬂiﬁws&oc}ﬂsﬁcdiswhmm

in the original structural equations. If not i,e if R lowthenthe

‘will be very poor proxies for the original Y's.

Nmoe,mrepomngﬂleI[Sregtmon,wed!dnotstaﬁeﬂiestmdard
errors of the estimated coefficients. But we can do this for the 2SLS
estimates because the structural coefficients are duecﬂywmnated

from the second stage of (OLS) regression.

. 5.8

Summing Up

In this unit we have learned about simultaneous equation model and its

* Biasetc. It has also forwarded an informal introduction to identification,
over identification or under identification etc. Estimation methods in case of
just identified equation namely ILS and in case of over zdmhﬁed equation
viz. 2SLS are also discussed here.
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5.10

Pk

£

Self Assessment Questions

Discuss the concept of simultaneity Bias with the help of suitable
example.

Discuss the order and Rank condition of identification.

Discuss the methods of ILS and ZSLS Under what condition they
g;lve identical mﬂt‘?
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